Advertisements
Advertisements
Question
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
Options
cos x
sec x
cosec x
sin x
Solution
cosec x
\[\text{ We have } , \]
\[\frac{2\left( \sin2x + 2 \cos^2 x - 1 \right)}{\text{ cos } x - \text{ sin } x - \cos3x + \sin3x}\]
\[ = \frac{2\left( \sin2x + \cos2x \right)}{\text{ cos } x - \text{ sin } x - 4 \cos^3 x + 3\text{ cos } x + 3\text{ sin } x - 4 \sin^3 x}\]
\[ = \frac{2\left( \sin2x + \cos2x \right)}{4\text{ cos } x - 4 \cos^3 x + 2\text{ sin } x - 4 \sin^3 x}\]
\[ = \frac{2\left( \sin2x + \cos2x \right)}{4\text{ cos } x\left( 1 - \cos^2 x \right) + 2\text{ sin } x\left( 1 - 2 \sin^2 x \right)}\]
\[ = \frac{2\left( \sin2x + \cos2x \right)}{4\text{ cos } x \sin^2 x + 2\text{ sin } x \cos2x}\]
\[ = \frac{2\left( \sin2x + \cos2x \right)}{2 \times 2\text{ sin } x \text{ cos } x \text{ sin } x + 2\text{ sin } x \cos2x}\]
\[ = \frac{2\left( \sin2x + \cos2x \right)}{2\sin2x \text{ sin } x + 2\text{ sin } x \cos2x}\]
\[ = \frac{2\left( \sin2x + \cos2x \right)}{2\text{ sinx } \left( \sin2x + \cos2x \right)}\]
\[ = \frac{1}{\text{ sin } x}\]
\[ = \text{ cosec } x \]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\frac{\sin 2x}{1 + \cos 2x} = \tan x\]
Prove that: \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
If \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]
\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\]
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
If \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
The value of sin 20° sin 40° sin 60° sin 80° is ______.
If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.
The value of cos12° + cos84° + cos156° + cos132° is ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.