Advertisements
Advertisements
Question
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
Solution
Equation \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] can be written as \[\frac{1}{\cos\left( x + \alpha \right)} + \frac{1}{\cos\left( x - \alpha \right)} = \frac{2}{\text{ cos } x}\]
\[ \Rightarrow \frac{1}{\text{ cos } x \times cos\alpha - \text{ sin } x \times sin\alpha} + \frac{1}{\text{ cos } x \times cos\alpha + \text{ sin } x \times sin\alpha} = \frac{2}{\text{ cos } x} \left[ \because \cos\left( A + B \right) = \text{ cos } A \times \text{ cos } B - \text{ sin } A \times \text
{ sin } B \text{ and } \cos\left( A - B \right) = \text{ cos } A \times \text{ cos } B + \text{ sin } A \times \text{ sin } B \right] \]
\[ \Rightarrow \frac{2\text{ cos } x \times cos\alpha}{\cos^2 x \times \cos^2 \alpha - \sin^2 x \times \sin^2 \alpha} = \frac{2}{\text{ cos } x}\]
\[ \Rightarrow \frac{\text{ cos } x \times cos\alpha}{\cos^2 x \times \cos^2 \alpha - \left( 1 - \cos^2 x \right) \times \sin^2 \alpha} = \frac{1}{\text{ cos } x}\]
\[\Rightarrow \frac{\cos^2 x \times cos\alpha}{\cos^2 x \times \cos^2 \alpha - \left( 1 - \cos^2 x \right) \times \sin^2 \alpha} = 1\]
\[ \Rightarrow \frac{\cos^2 x \times cos\alpha}{\cos^2 x \times \cos^2 \alpha - \sin^2 \alpha + \cos^2 x \sin^2 \alpha} = 1\]
\[ \Rightarrow \cos^2 x \times cos\alpha = \cos^2 x \times \cos^2 \alpha - \sin^2 \alpha + \cos^2 x \sin^2 \alpha\]
\[ \Rightarrow \cos^2 x \times cos\alpha = \cos^2 x\left( \cos^2 \alpha + \sin^2 \alpha \right) - \sin^2 \alpha\]
\[ \Rightarrow \cos^2 x \times cos\alpha = \cos^2 x - \sin^2 \alpha\]
\[\Rightarrow \cos^2 x \times cos\alpha - \cos^2 x = - \sin^2 \alpha\]
\[ \Rightarrow \cos^2 x\left( cos\alpha - 1 \right) = - \sin^2 \alpha\]
\[ \Rightarrow \cos^2 x\left( 1 - cos\alpha \right) = \sin^2 \alpha\]
\[ \Rightarrow \cos^2 x = \frac{\sin^2 \alpha}{2 \sin^2 \frac{\alpha}{2}} \left( \because 2 \sin^2 \frac{x}{2} = 1 - \text{ cos } x \right)\]
\[\Rightarrow \cos^2 x = \frac{4 \sin^2 \frac{\alpha}{2} \times \cos^2 \frac{\alpha}{2}}{2 \sin^2 \frac{\alpha}{2}} \left( \because \sin^2 x = 4 \sin^2 \frac{x}{2} \times \cos^2 \frac{x}{2} \right) \]
\[ \Rightarrow \text{ cos } x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
\[\text{ Hence proved } .\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]
Prove that: \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]
Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x \text{ cosec } 2 x\]
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to
The value of `cos^2 48^@ - sin^2 12^@` is ______.
The value of sin 20° sin 40° sin 60° sin 80° is ______.
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.
The value of sin50° – sin70° + sin10° is equal to ______.
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.
The value of `(sin 50^circ)/(sin 130^circ)` is ______.