English

If 5 Sin α = 3 Sin ( α + 2 β ) ≠ 0 , Then Tan ( α + β ) is Equal to - Mathematics

Advertisements
Advertisements

Question

If  \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\]  is equal to

 

Options

  • \[2 \tan \beta\]

  • \[3 \tan \beta\]

  • \[4 \tan \beta\]

  • \[6 \tan \beta\]

MCQ

Solution

\[4 \tan \beta\]

\[ \text{ We have } , \]

\[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right)\]

\[ \Rightarrow \frac{5}{3} = \frac{\sin \left( \alpha + 2 \beta \right)}{\sin \alpha}\]

\[ \Rightarrow \frac{5 - 3}{5 + 3} = \frac{\sin \left( \alpha + 2 \beta \right) - \sin \alpha}{\sin \left( \alpha + 2 \beta \right) + \sin \alpha} \left( \text{ Using componendo and dividendo } \right)\]

\[ \Rightarrow \frac{2}{8} = \frac{\sin \left( \alpha + 2 \beta \right) - \sin \alpha}{\sin \left( \alpha + 2 \beta \right) + \sin \alpha}\]

\[ \Rightarrow \frac{1}{4} = \frac{2\cos\frac{\alpha + 2 \beta + \alpha}{2}\sin\frac{\alpha + 2 \beta - \alpha}{2}}{2\sin\frac{\alpha + 2 \beta + \alpha}{2}\cos\frac{\alpha + 2 \beta - \alpha}{2}}\]

\[ \Rightarrow \frac{1}{4} = \frac{\cos\left( \alpha + \beta \right) \sin \beta}{\sin\left( \alpha + \beta \right) \cos \beta}\]

\[ \Rightarrow \frac{1}{4} = \cot \left( \alpha + \beta \right) \tan \beta\]

\[ \Rightarrow \frac{1}{4} = \frac{1}{\tan \left( \alpha + \beta \right)}\tan \beta\]

\[ \therefore \tan \left( \alpha + \beta \right) = 4 \tan \beta\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 15 | Page 44

RELATED QUESTIONS

Prove that:  \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]

 

Prove that:  \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]

 

Prove that:  \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]

 


Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]

 

Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]


Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

 If \[\cos x = - \frac{3}{5}\]  and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .

 

 


 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] . 

 

 


Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that 
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]


If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that

(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]

 


If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]

 

 


If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]

 

\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\] 


\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\] 


Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]

  

Prove that:  \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\] 

 

Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]

 

If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.

 

 


If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .

 

 


Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]

  

The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

For all real values of x, \[\cot x - 2 \cot 2x\] is equal to 

 

The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\]  is equal to

   

If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]

 


The value of `cos^2 48^@ - sin^2 12^@` is ______.


The greatest value of sin x cos x is ______.


If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`


If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.

`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta =  (2tantheta)/(1 + tan^2theta)]`.


If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.


The value of sin50° – sin70° + sin10° is equal to ______.


The value of `(sin 50^circ)/(sin 130^circ)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×