Advertisements
Advertisements
Question
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
Solution
\[LHS = \cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{3\pi}{15} \cos\frac{5\pi}{15} \cos\frac{6\pi}{15} \cos\frac{7\pi}{15}\]
\[ = \cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15}\left( \cos\frac{3\pi}{15} \cos\frac{6\pi}{15} \right) \times \left( - \cos\frac{8\pi}{15} \right)\]
\[ = - \frac{1}{2}\left[ \cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{1}{2} \times \left( \cos\frac{3\pi}{15} \cos\frac{6\pi}{15} \right)\]
\[ = - \frac{1}{2} \times \frac{2^3}{2^4 \sin\frac{\pi}{15}}\left[ 2\sin\frac{\pi}{15}\cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{2}{2^2 \times \sin\frac{3\pi}{15}} \left( 2\sin\frac{3\pi}{15}\cos\frac{3\pi}{15} \cos\frac{6\pi}{15} \right)\]
\[ = - \frac{2^3}{132\sin\frac{\pi}{15}}\left[ \sin\frac{2\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{2}{4\sin\frac{3\pi}{15}} \left( \sin\frac{6\pi}{15} \cos\frac{6\pi}{15} \right)\]
\[ = - \frac{2^2}{32\sin\frac{\pi}{15}}\left[ 2\sin\frac{2\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{1}{4\sin\frac{3\pi}{15}} \left( 2\sin\frac{6\pi}{15} \cos\frac{6\pi}{15} \right)\]
\[= - \frac{2}{32\sin\frac{\pi}{15}}\left[ \sin\frac{8\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{\sin\frac{12\pi}{15}}{4\sin\frac{3\pi}{15}}\]
\[ = - \frac{1}{32\sin\frac{\pi}{15}}\left[ \sin\frac{16\pi}{15} \right] \times \frac{\sin\frac{12\pi}{15}}{4\sin\frac{3\pi}{15}}\]
\[ = - \frac{\sin\left( \pi + \frac{\pi}{15} \right)}{128\sin\frac{\pi}{15}} \times \frac{\sin\left( \pi - \frac{3\pi}{15} \right)}{\sin\frac{3\pi}{15}}\]
\[ = - \frac{- \sin\frac{\pi}{15}}{128\sin\frac{\pi}{15}} \times \frac{\sin\frac{3\pi}{15}}{\sin\frac{3\pi}{15}}\]
\[ = \frac{1}{128}\]
\[ = RHS\]
\[\text{ Hence proved} .\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]
Prove that: \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\] and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
If \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
The value of cos12° + cos84° + cos156° + cos132° is ______.
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.
The value of `(sin 50^circ)/(sin 130^circ)` is ______.
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.