Advertisements
Advertisements
Question
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
Solution
\[We have, \]
\[ \cos^2 76° + \cos^2 16° - \cos76° \cos16° \]
\[ = \frac{1}{2}\left[ 1 + \cos2\left( 76 \right)° + 1 + \cos2\left( 16 \right)° - \cos\left( 76 + 16 \right)° - \cos\left( 76 - 16 \right)° \right]\]
` [ ∵ 2 cos ^2 theta = 1 + cos 2 theta and 2 cos A cos B = cos ( A +B ) + cos ( A-B)]`
\[ = \frac{1}{2}\left[ 2 + \cos152° + \cos32° - \cos92° - \frac{1}{2} \right]\]
\[ = \frac{1}{2}\left[ \frac{3}{2} - \cos\left( 180 - 152° \right) + \cos32° - \cos92° \right]\]
\[= \frac{1}{2}\left[ \frac{3}{2} - \cos28° + 2\sin\frac{92° + 32° }{2} \sin\frac{92° - 32° }{2} \right]\]
\[ \left[ \text{ cos } C - \text{ cos } D = 2\sin\frac{C + D}{2}\sin\frac{D - C}{2} \right]\]
\[ = \frac{1}{2}\left[ \frac{3}{2} - \cos28° + 2\sin\frac{124° }{2} \sin\frac{60° }{2} \right]\]
\[ = \frac{1}{2}\left[ \frac{3}{2} - \cos28° + 2\sin62° \sin30° \right]\]
\[ = \frac{1}{2}\left[ \frac{3}{2} - \cos28° + 2\sin62° \times \frac{1}{2} \right]\]
\[ = \frac{1}{2}\left[ \frac{3}{2} - \cos28° + \sin62° \right]\]
\[ = \frac{1}{2}\left[ \frac{3}{2} - \cos28° + \sin\left( 90 - 28 \right)° \right]\]
\[ = \frac{1}{2}\left[ \frac{3}{2} - \cos28° + \cos28° \right]\]
\[ = \frac{3}{4}\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]
, then find the value of tan2A.
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]
If \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]
If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to
The value of `cos^2 48^@ - sin^2 12^@` is ______.
The value of `cos pi/5 cos (2pi)/5 cos (4pi)/5 cos (8pi)/5` is ______.
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.
The value of cos12° + cos84° + cos156° + cos132° is ______.
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.