Advertisements
Online Mock Tests
Chapters
2: Relations
3: Functions
4: Measurement of Angles
5: Trigonometric Functions
6: Graphs of Trigonometric Functions
7: Values of Trigonometric function at sum or difference of angles
8: Transformation formulae
▶ 9: Values of Trigonometric function at multiples and submultiples of an angle
10: Sine and cosine formulae and their applications
11: Trigonometric equations
12: Mathematical Induction
13: Complex Numbers
14: Quadratic Equations
15: Linear Inequations
16: Permutations
17: Combinations
18: Binomial Theorem
19: Arithmetic Progression
20: Geometric Progression
21: Some special series
22: Brief review of cartesian system of rectangular co-ordinates
23: The straight lines
24: The circle
25: Parabola
26: Ellipse
27: Hyperbola
28: Introduction to three dimensional coordinate geometry
29: Limits
30: Derivatives
31: Mathematical reasoning
32: Statistics
33: Probability
![RD Sharma solutions for Mathematics [English] Class 11 chapter 9 - Values of Trigonometric function at multiples and submultiples of an angle RD Sharma solutions for Mathematics [English] Class 11 chapter 9 - Values of Trigonometric function at multiples and submultiples of an angle - Shaalaa.com](/images/9788193663004-mathematics-english-class-11_6:972cafaba17f4949992ada196fa0f041.jpg)
Advertisements
Solutions for Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle
Below listed, you can find solutions for Chapter 9 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 11.
RD Sharma solutions for Mathematics [English] Class 11 9 Values of Trigonometric function at multiples and submultiples of an angle Exercise 9.1 [Pages 28 - 30]
Prove that: \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]
Prove that: \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]
Prove that: \[\frac{\sin 2x}{1 + \cos 2x} = \tan x\]
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]
Prove that: \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]
Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]
Prove that: \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]
Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]
Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]
Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x \text{ cosec } 2 x\]
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]
Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]
Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\]
If \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .
RD Sharma solutions for Mathematics [English] Class 11 9 Values of Trigonometric function at multiples and submultiples of an angle Exercise 9.2 [Pages 36 - 37]
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\]
\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\]
Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
RD Sharma solutions for Mathematics [English] Class 11 9 Values of Trigonometric function at multiples and submultiples of an angle Exercise 9.3 [Page 42]
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\]
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
RD Sharma solutions for Mathematics [English] Class 11 9 Values of Trigonometric function at multiples and submultiples of an angle Exercise 9.4 [Page 42]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
If \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .
If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] .
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]
, then find the value of tan2A.
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
If \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .
RD Sharma solutions for Mathematics [English] Class 11 9 Values of Trigonometric function at multiples and submultiples of an angle Exercise 9.5 [Pages 43 - 45]
8 cos x
cos x
8 sin x
sin x
- \[\frac{\tan 2A}{\tan 8A}\]
- \[\frac{\tan 8A}{\tan 2A}\]
- \[\frac{\cot 8A}{\cot 2A}\]
none of these.
The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\] is
- \[\frac{1}{8}\]
- \[\frac{1}{16}\]
- \[\frac{1}{32}\]
none of these
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
1
-1
- \[- \sqrt{5}\]
- \[\sqrt{5}\]
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
- \[\tan 2x\]
- \[\tan x\]
- \[- \cot 3x\]
none of these
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
0
- \[\sqrt{5}\]
1
none of these
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
6
1
- \[\frac{1}{6}\]
none of these
If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\] and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]
- \[\frac{1}{4}\]
- \[\frac{1}{2}\]
1
none of these
If \[2 \tan \alpha = 3 \tan \beta, \text{ then } \tan \left( \alpha - \beta \right) =\]
\[\frac{\sin 2 \beta}{5 - \cos 2 \beta}\]
- \[\frac{\cos 2 \beta}{5 - \cos 2 \beta}\]
\[\frac{\sin 2 \beta}{5 + \cos 2 \beta}\]
none of these
If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then
\[\tan 3 \alpha = \tan 2 \beta\]
- \[\tan 2 \alpha = \tan \beta\]
- \[\tan 2 \alpha = \tan \alpha\]
none of these
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
- \[- \frac{a}{b}\]
- \[- \frac{b}{a}\]
- \[\sqrt{a^2 + b^2}\]
none of these
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
1
2
3
4
The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]
1
-1
- \[\frac{1}{2} \sin 2x\]
none of these.
\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]
1
2
4
none of these.
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
\[2 \tan \beta\]
\[3 \tan \beta\]
\[4 \tan \beta\]
\[6 \tan \beta\]
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
2
1
0
-1
If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval
\[\left[ - 1, 3 \right]\]
\[\left[ 1, 2 \right]\]
\[\left[ - 2, 4 \right]\]
none of these
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
cos x
sin x
tan x
none of these
If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]
3
4
1
2
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
\[\frac{1}{2} \cos 2x\]
0
\[- \frac{1}{2} \cos 2x\]
\[\frac{1}{2}\]
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
cos x
sin x
– cos x
sin x
The value of \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is
0
cos 3A
cos 2A
none of these
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
cos x
sec x
cosec x
sin x
\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\] is equal to
\[\sin 17x - \sin 11x\]
\[\sin 11x - \sin 17x\]
\[\cos 17x - \cos 11x\]
\[\cos 17x + \cos 11x\]
If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =
\[\sqrt{2} \tan \beta\]
\[\frac{1}{\sqrt{2}}\tan \beta\]
\[\sqrt{2} \cot \beta\]
\[\frac{1}{\sqrt{2}} \cot \beta\]
If \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]
\[1 - e \cos \left( \cos x + e \right)\]
\[\frac{1 + e \cos x}{\cos x - e}\]
\[\frac{1 - e \cos x}{\cos x - e}\]
\[\frac{\cos x - e}{1 - e \cos x}\]
If \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]
-1
1
1/2
None of these
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
- \[\frac{1 + t}{1 - t}\]
- \[\frac{1 - t}{1 + t}\]
- \[\frac{2t}{1 - t}\]
- \[\frac{2t}{1 + t}\]
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
cos 2x
sin 2x
cos 4x
none of these
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
cos 2A
sin 2A
cos A
0
The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is
cot 3x
2cot 3x
tan 3x
3 tan 3x
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
3 tan 3x
tan 3x
3 cot 3x
cot 3x
The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]
- \[\cot \alpha/2\]
- \[\cot \alpha\]
- \[\tan \alpha/2\]
None of these
- \[16 \cos^4 x - 12 \cos^2 x + 1\]
- \[16 \cos^4 x + 12 \cos^2 x + 1\]
- \[16 \cos^4 x - 12 \cos^2 x - 1\]
- \[16 \cos^4 x + 12 \cos^2 x - 1\]
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
\[\frac{\sin 2n \alpha}{2n \sin \alpha}\]
- \[\frac{\sin 2^n \alpha}{2^n \sin 2^{n - 1} \alpha}\]
\[\frac{\sin 4^{n - 1} \alpha}{4^{n - 1} \sin \alpha}\]
- \[\frac{\sin 2^n \alpha}{2^n \sin \alpha}\]
If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]
a
b
- \[\frac{a}{b}\]
- \[\frac{b}{a}\]
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to
\[\sin2\beta\]
- \[\sin4\beta\]
- \[\sin3\beta\]
- \[\cos2\beta\]
The value of `cos^2 48^@ - sin^2 12^@` is ______.
- `(sqrt5 + 1)/(2 sqrt2)`
- `(sqrt5 + 1)/(5)`
- `(sqrt5 - 1)/(8)`
- `(sqrt5 + 1)/(8)`
Solutions for 9: Values of Trigonometric function at multiples and submultiples of an angle
![RD Sharma solutions for Mathematics [English] Class 11 chapter 9 - Values of Trigonometric function at multiples and submultiples of an angle RD Sharma solutions for Mathematics [English] Class 11 chapter 9 - Values of Trigonometric function at multiples and submultiples of an angle - Shaalaa.com](/images/9788193663004-mathematics-english-class-11_6:972cafaba17f4949992ada196fa0f041.jpg)
RD Sharma solutions for Mathematics [English] Class 11 chapter 9 - Values of Trigonometric function at multiples and submultiples of an angle
Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC 9 (Values of Trigonometric function at multiples and submultiples of an angle) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 11 chapter 9 Values of Trigonometric function at multiples and submultiples of an angle are Transformation Formulae, 180 Degree Plusminus X Function, 2X Function, 3X Function, Expressing Sin (X±Y) and Cos (X±Y) in Terms of Sinx, Siny, Cosx and Cosy and Their Simple Applications, Concept of Angle, Introduction of Trigonometric Functions, Signs of Trigonometric Functions, Domain and Range of Trigonometric Functions, Trigonometric Functions of Sum and Difference of Two Angles, Trigonometric Equations, Trigonometric Functions, Truth of the Identity, Negative Function Or Trigonometric Functions of Negative Angles, 90 Degree Plusminus X Function, Conversion from One Measure to Another, Graphs of Trigonometric Functions, Values of Trigonometric Functions at Multiples and Submultiples of an Angle, Sine and Cosine Formulae and Their Applications.
Using RD Sharma Mathematics [English] Class 11 solutions Values of Trigonometric function at multiples and submultiples of an angle exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 11 students prefer RD Sharma Textbook Solutions to score more in exams.
Get the free view of Chapter 9, Values of Trigonometric function at multiples and submultiples of an angle Mathematics [English] Class 11 additional questions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.