English

Prove that ∣ ∣ cos x cos ( π 3 − x ) cos ( π 3 + x ) ∣ ∣ ≤ 1 4 for all values of x - Mathematics

Advertisements
Advertisements

Question

Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 
Numerical

Solution

\[\frac{\pi}{3} = 60°\]
\[\text{ We have } , \]
\[\left| \text{ cos } x \cos\left( 60°  - x \right) \cos\left( 60° + x \right) \right|\]
\[ = \left| \text{ cos } x\left( \cos^2 60°  - \sin^2 x \right) \right| \left[ \cos^2 A - \sin^2 B = \cos\left( A - B \right) \cos\left( A + B \right) \right]\]
\[ = \left| \text{ cos } x\left( \frac{1}{4} - \sin^2 x \right) \right| \]
\[ = \left| \text{ cos } x\frac{1}{4}\left( 1 - 4 \sin^2 x \right) \right|\]
\[ = \left| \frac{1}{4}\text{ cos } x\left\{ 1 - 4\left( 1 - \cos^2 x \right) \right\} \right|\]
\[ = \left| \frac{1}{4}\text{ cos } x\left\{ - 3 + 4 \cos^2 x \right\} \right|\] 

\[= \left| \frac{1}{4}\left( 4 \cos^3 x - 3\text{ cos } x \right) \right|\]
\[ = \left| \frac{1}{4}\cos3x \right| \left[ \because \text{ cos } 3x = 4 \cos^3 x - 3\text{ cos } x \right] \]
\[ \leq \frac{1}{4} \left( \because \left| \text{ cos } x \right| \leq 1 \text{ for all }  x \right)\]
\[ \therefore \left| \text{ cos } x \cos\left( 60°- x \right) \cos\left( 60° + x \right) \right| \leq \frac{1}{4}\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.2 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.2 | Q 11 | Page 37

RELATED QUESTIONS

Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]


Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]

 

Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]

 

Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x  \text{ cosec }  2 x\]

 

Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]


\[\tan 82\frac{1° }{2} = \left( \sqrt{3} + \sqrt{2} \right) \left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]

 


 If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]

, find the value of sin 4x.

 

 


Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]


If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that 
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(ii)  \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]

 


If  \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .

 

Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\] 


Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]

  

Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78°  = \frac{1}{16}\]

 

If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.

 

 


If  \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]

 

 


If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.

 
 

If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .

 

 


\[8 \sin\frac{x}{8} \cos \frac{x}{2}\cos\frac{x}{4} \cos\frac{x}{8}\]  is equal to 

 


If  \[2 \tan \alpha = 3 \tan \beta, \text{ then }  \tan \left( \alpha - \beta \right) =\]

 


If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha - \cos \beta = b \text{ then }  \tan \frac{\alpha - \beta}{2} =\]

 


The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is 

 

If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval


The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is 

 

\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\]  is equal to


If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]

 


The value of `cos^2 48^@ - sin^2 12^@` is ______.


If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.


Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A


The value of cos12° + cos84° + cos156° + cos132° is ______.


If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos  theta/2` is ______.


The value of cos248° – sin212° is ______.

[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×