हिंदी

Prove that ∣ ∣ cos x cos ( π 3 − x ) cos ( π 3 + x ) ∣ ∣ ≤ 1 4 for all values of x - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 
संख्यात्मक

उत्तर

\[\frac{\pi}{3} = 60°\]
\[\text{ We have } , \]
\[\left| \text{ cos } x \cos\left( 60°  - x \right) \cos\left( 60° + x \right) \right|\]
\[ = \left| \text{ cos } x\left( \cos^2 60°  - \sin^2 x \right) \right| \left[ \cos^2 A - \sin^2 B = \cos\left( A - B \right) \cos\left( A + B \right) \right]\]
\[ = \left| \text{ cos } x\left( \frac{1}{4} - \sin^2 x \right) \right| \]
\[ = \left| \text{ cos } x\frac{1}{4}\left( 1 - 4 \sin^2 x \right) \right|\]
\[ = \left| \frac{1}{4}\text{ cos } x\left\{ 1 - 4\left( 1 - \cos^2 x \right) \right\} \right|\]
\[ = \left| \frac{1}{4}\text{ cos } x\left\{ - 3 + 4 \cos^2 x \right\} \right|\] 

\[= \left| \frac{1}{4}\left( 4 \cos^3 x - 3\text{ cos } x \right) \right|\]
\[ = \left| \frac{1}{4}\cos3x \right| \left[ \because \text{ cos } 3x = 4 \cos^3 x - 3\text{ cos } x \right] \]
\[ \leq \frac{1}{4} \left( \because \left| \text{ cos } x \right| \leq 1 \text{ for all }  x \right)\]
\[ \therefore \left| \text{ cos } x \cos\left( 60°- x \right) \cos\left( 60° + x \right) \right| \leq \frac{1}{4}\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.2 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.2 | Q 11 | पृष्ठ ३७

संबंधित प्रश्न

Prove that:  \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]


Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]

 

Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]


Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x  \text{ cosec }  2 x\]

 

Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]


Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]


Prove that:  \[\cos 7°  \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]

 

Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]

 

Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]

 

If \[2 \tan \alpha = 3 \tan \beta,\]  prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .

 

If  \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]

 

Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]

  

Prove that:  \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\] 

 

If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.

 

 


In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.

 

Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]

  

The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

If \[\cos 2x + 2 \cos x = 1\]  then, \[\left( 2 - \cos^2 x \right) \sin^2 x\]  is equal to 

 
 

If  \[2 \tan \alpha = 3 \tan \beta, \text{ then }  \tan \left( \alpha - \beta \right) =\]

 


If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha - \cos \beta = b \text{ then }  \tan \frac{\alpha - \beta}{2} =\]

 


The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]

 

If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]


The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

\[\frac{\sin 3x}{1 + 2 \cos 2x}\]   is equal to


The value of  \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is 


\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\]  is equal to


The value of \[\cos \left( 36°  - A \right) \cos \left( 36° + A \right) + \cos \left( 54°  - A \right) \cos \left( 54°  + A \right)\] is 

 

If \[n = 1, 2, 3, . . . , \text{ then }  \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to

 


Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A


If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`


Find the value of the expression `cos^4  pi/8 + cos^4  (3pi)/8 + cos^4  (5pi)/8 + cos^4  (7pi)/8`

[Hint: Simplify the expression to `2(cos^4  pi/8 + cos^4  (3pi)/8) = 2[(cos^2  pi/8 + cos^2  (3pi)/8)^2 - 2cos^2  pi/8 cos^2  (3pi)/8]`


If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.


The value of `sin  pi/10  sin  (13pi)/10` is ______.

`["Hint: Use"  sin18^circ = (sqrt5 - 1)/4 "and"  cos36^circ = (sqrt5 + 1)/4]`


The value of cos248° – sin212° is ______.

[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]


If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×