Advertisements
Advertisements
प्रश्न
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
विकल्प
1
-1
- \[- \sqrt{5}\]
- \[\sqrt{5}\]
उत्तर
1
\[We have, \]
\[\cos2x + 2\text{ cos } x = 1\]
\[ \Rightarrow 2 \cos^2 x - 1 + 2\text{ cos } x = 1\]
\[ \Rightarrow \cos^2 x + \text{ cos } x - 1 = 0\]
\[ \Rightarrow \text{ cos } x = \frac{- 1 \pm \sqrt{1^2 + 4}}{2}\]
\[ \Rightarrow \text{ cos } x = \frac{- 1 \pm \sqrt{5}}{2}\]
\[ \Rightarrow \text{ cos } x = \frac{- 1 + \sqrt{5}}{2}\]
\[\text{ Now, } \]
\[\left( 2 - \cos^2 x \right) \sin^2 x = \left[ 2 - \left( \frac{- 1 + \sqrt{5}}{2} \right)^2 \right] \left( 1 - \cos^2 x \right)\]
\[ = \left[ 2 - \frac{1}{4}\left( 1 - 2\sqrt{5} + 5 \right) \right] \left( 1 - \frac{1}{4}\left( 1 - 2\sqrt{5} + 5 \right) \right)\]
\[ = \frac{1}{4}\left( 1 + \sqrt{5} \right)\left( \sqrt{5} - 1 \right) = \frac{4}{4} = 1\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
If \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\] is
If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is
The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to
If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.