Advertisements
Advertisements
प्रश्न
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
उत्तर
We have,
\[\sqrt{2 + \sqrt{2 + 2\cos2x}} = \sqrt{2 + \sqrt{2\left( 1 + \cos2x \right)}} \]
\[ = \sqrt{2 + \sqrt{2 . 2 \cos^2 x}}\]
\[ = \sqrt{2 + 2\left| \text{ cos } x \right|}\]
\[ = \sqrt{2 - 2\text{ cos } x} \left( \because \frac{\pi}{2} < x < \pi \right) \]
\[ = \sqrt{2\left( 1 - \text{ cos } x \right)}\]
\[ = \sqrt{2 . 2 \sin^2 \frac{x}{2}}\]
\[ = 2\left| \sin\frac{x}{2} \right|\]
\[ = 2\sin\frac{x}{2} \left( \because \frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2} \right)\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
Prove that: \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] .
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]
, then find the value of tan2A.
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\] is
If \[2 \tan \alpha = 3 \tan \beta, \text{ then } \tan \left( \alpha - \beta \right) =\]
If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\] is equal to
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is
The value of `cos^2 48^@ - sin^2 12^@` is ______.
The value of `cos pi/5 cos (2pi)/5 cos (4pi)/5 cos (8pi)/5` is ______.
The value of cos12° + cos84° + cos156° + cos132° is ______.
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.