हिंदी

Prove That: Sin X + Sin 2 X 1 + Cos X + Cos 2 X = Tan X - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:  \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]

 
संख्यात्मक

उत्तर

\[LHS = \frac{\text{ sin } x + \sin2x}{1 + \text{ cos } x + \cos2x}\]

\[ = \frac{\text{ sin } x + \sin2x}{\text{ cos } x + \left( 1 + \text{ cos } 2x \right)}\]

\[= \frac{\text{ sin } x + 2\text{ sin } x \text{ cos } x}{\text{ cos } x + 2 \cos^2 x} \left[ \because \sin2x = 2\text{ sin } x \text{ cos } x \text{ and  } 2 \cos^2 x = 1 + \cos2x \right]\]

\[= \frac{\text{ sin } x \left( 1 + 2\text{ cos } x \right)}{\text{ cos } x \left( 1 + 2\text{ cos } x \right)}\]

\[ = \text{ tan } x = RHS\]

\[\text{ Hence proved } .\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.1 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.1 | Q 6 | पृष्ठ २८

संबंधित प्रश्न

Prove that:  \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]


Prove that:  \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]


Prove that:  \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]

 

Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]


Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]


Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]


\[\tan 82\frac{1° }{2} = \left( \sqrt{3} + \sqrt{2} \right) \left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]

 


If  \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan \frac{x}{2}\] . 

 

 


 If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]

, find the value of sin 4x.

 

 


Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]


Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that

(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]

 


If  \[\sin \alpha = \frac{4}{5} \text{ and }  \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]

 

If  \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .

 

\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\] 


\[\sin^3 x + \sin^3 \left( \frac{2\pi}{3} + x \right) + \sin^3 \left( \frac{4\pi}{3} + x \right) = - \frac{3}{4} \sin 3x\]

 


Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]

  

If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.

 

If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.

 

 


Write the value of \[\cos^2 76°  + \cos^2 16°  - \cos 76° \cos 16°\] 

 

Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]

  

The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

If \[\cos 2x + 2 \cos x = 1\]  then, \[\left( 2 - \cos^2 x \right) \sin^2 x\]  is equal to 

 
 

The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]


The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\]  is equal to

   

If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]


The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

\[\frac{\sin 3x}{1 + 2 \cos 2x}\]   is equal to


If  \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]

 


The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is 


If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then

\[\cos2\alpha\]   is equal to

 

The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.


The value of sin50° – sin70° + sin10° is equal to ______.


The value of `sin  pi/18 + sin  pi/9 + sin  (2pi)/9 + sin  (5pi)/18` is given by ______.


If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×