Advertisements
Advertisements
प्रश्न
उत्तर
\[Here, \]
\[\tan\left( 82 . 5 \right)° = \tan\left( 90 - 7 . 5 \right)°\]
\[ = \cot\left( 7 . 5 \right)°\]
\[ = \frac{1}{\tan\left( 7 . 5 \right)°}\]
\[\text{ We know } , \]
\[\tan\left( \frac{x}{2} \right) = \frac{\text{ sin } x}{1 + \text{ cos } x}\]
\[\text{ On putting } x = 15° , \text{ we get } \]
\[\tan \left( \frac{15}{2} \right)^°= \frac{\sin15°}{1 + \cos15°}\]
\[ = \frac{\sin\left( 45 - 30 \right)° }{1 + \cos\left( 45 - 30 \right)°}\]
\[ = \frac{\sin45° \cos30° - \sin30° \cos45° }{1 + \cos45° \cos30° + \sin45° \sin30° }\]
\[ = \frac{\left( \frac{1}{\sqrt{2}} \right) \times \left( \frac{\sqrt{3}}{2} \right) - \left( \frac{1}{2} \right) \times \left( \frac{1}{\sqrt{2}} \right)}{1 + \left( \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} \right) + \left( \frac{1}{\sqrt{2}} \times \frac{1}{2} \right)}\]
\[ = \frac{\frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}}{1 + \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}}\]
\[ = \frac{\sqrt{3} - 1}{2\sqrt{2} + \sqrt{3} + 1}\]
\[\text{ Now } , \]
\[\tan\left( 82 . 5 \right)° = \frac{1}{\tan\left( 7 . 5 \right)° }\]
\[ = \frac{2\sqrt{2} + \sqrt{3} + 1}{\sqrt{3} - 1}\]
\[ = \frac{2\sqrt{2} + \sqrt{3} + 1}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1}\]
\[ = \frac{\sqrt{3} + 1\left( 2\sqrt{2} + \sqrt{3} + 1 \right)}{\left( \sqrt{3} \right)^2 - 1^2}\]
\[ = \frac{2\sqrt{6} + 3 + \sqrt{3} + 2\sqrt{2} + \sqrt{3} + 1}{3 - 1}\]
\[ = \frac{2\sqrt{6} + 2\sqrt{3} + 2\sqrt{2} + 4}{2}\]
\[ = \sqrt{6} + \sqrt{3} + \sqrt{2} + 2\]
\[ = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6} . . . \left( 1 \right)\]
\[ = \sqrt{6} + \sqrt{3} + 2 + \sqrt{2}\]
\[ = \sqrt{3}\left( \sqrt{2} + 1 \right) + \sqrt{2}\left( \sqrt{2} + 1 \right)\]
\[ = \left( \sqrt{3} + \sqrt{2} \right)\left( \sqrt{2} + 1 \right) . . . \left( 2 \right)\]
\[\text{ From eqs } . \left( 1 \right) \text{ and } \left( 2 \right), \text{ we get} \]
\[ \tan\left( 82 . 5 \right)° = \left( \sqrt{3} + \sqrt{2} \right)\left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\]
Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]
If \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
The value of sin 20° sin 40° sin 60° sin 80° is ______.
The value of `cos pi/5 cos (2pi)/5 cos (4pi)/5 cos (8pi)/5` is ______.
The value of `sin pi/10 sin (13pi)/10` is ______.
`["Hint: Use" sin18^circ = (sqrt5 - 1)/4 "and" cos36^circ = (sqrt5 + 1)/4]`
The value of `(sin 50^circ)/(sin 130^circ)` is ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.