Advertisements
Advertisements
प्रश्न
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
उत्तर
\[\frac{\pi}{8} = \left( 22\frac{1}{2} \right)^°\]
\[Let A = \left( 22\frac{1}{2} \right)^° \]
\[\text{ Using the identity } \cot2A = \frac{\cot^2 A - 1}{2\text{ cot } A}, \text{ we get } \]
\[\cot45° = \frac{\cot^2 \left( 22\frac{1}{2} \right)^° - 1}{2\cot \left( 22\frac{1}{2} \right)^°} \]
\[ \Rightarrow 1 = \frac{\cot^2 \left( 22\frac{1}{2} \right)^°- 1}{2\cot \left( 22\frac{1}{2} \right)^°} \left( \because \cot45° = 1 \right)\]
\[ \Rightarrow 2\cot \left( 22\frac{1}{2} \right)^° - \cot^2 \left( 22\frac{1}{2} \right)^° + 1 = 0 \]
\[\Rightarrow \cot^2 \left( 22\frac{1}{2} \right)^\circ - 2\cot \left( 22\frac{1}{2} \right)^\circ - 1 = 0\]
\[ \Rightarrow \left\{ \cot^2 \left( 22\frac{1}{2} \right)^\circ - 2\cot \left( 22\frac{1}{2} \right)^\circ + 1 \right\} - 2 = 0\]
\[ \Rightarrow \left\{ \cot \left( 22\frac{1}{2} \right)^\circ - 1 \right\}^2 = 2\]
\[ \Rightarrow \cot \left( 22\frac{1}{2} \right)^\circ - 1 = \sqrt{2}\]
\[ \Rightarrow \cot \left( 22\frac{1}{2} \right)^\circ = \sqrt{2} + 1\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]
Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
If \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]
\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\]
Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]
The value of `cos^2 48^@ - sin^2 12^@` is ______.
The greatest value of sin x cos x is ______.
If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]
The value of cos12° + cos84° + cos156° + cos132° is ______.
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]