Advertisements
Advertisements
प्रश्न
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]
विकल्प
`(sqrt(5) + 1)/8`
`(sqrt(5) - 1)/8`
`(sqrt(5) + 1)/5`
`(sqrt(5) + 1)/(2sqrt(2)`
उत्तर
The value of cos248° – sin212° is `bbunderline((sqrt(5) + 1)/8)`.
Explanation:
The given expression is cos248° – sin212°.
cos248° – sin212° = cos(48° + 12°).cos(48° – 12°) ......[∵ cos2A – sin2B = cos(A + B).cos(A – B)]
= cos 60°.cos 36°
= `1/2 xx (sqrt(5) + 1)/4`
= `(sqrt(5) + 1)/8`
APPEARS IN
संबंधित प्रश्न
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .
If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]
, then find the value of tan2A.
If \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .
If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\] is equal to
The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.