Advertisements
Advertisements
प्रश्न
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
विकल्प
sin2β
sin4β
sin3β
cos2β
उत्तर
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to sin4β.
Explanation:
Given that: tanα = `1/7`, tanβ = `1/3`
cos2α = `(1 - tan^2 alpha)/(1 + tan^2 alpha)`
= `(1 - (1/7)^2)/(1 + (1/7)^2)`
= `(1 - 1/49)/(1 + 1/49)`
= `48/50`
= `24/25`
Now tan2β = `(2tan beta)/(1 - tan^2 beta)`
= `(2 xx 1/3)/(1 - 1/9)`
= `(2/3)/(8/9)`
= `2/3 xx 9/8`
= `3/4`
∴ tan2β = `3/4`
sin4β = `(2tan 2beta)/(1 + tan^2 2beta)`
= `(2 xx 3/4)/(1 + (3/4)^2`
= `(3/2)/(1 + 9/16)`
= `3/2 xx 16/25`
= `24/25`
cos2α = sin4β = `24/25`
APPEARS IN
संबंधित प्रश्न
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
Prove that
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Prove that:
Show that sin 100° − sin 10° is positive.
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
The value of sin(45° + θ) - cos(45° - θ) is ______.
If sinx + cosx = a, then sin6x + cos6x = ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`