Advertisements
Advertisements
प्रश्न
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
उत्तर
Given:
\[\sin A = \frac{12}{13}\text{ and }\sin B = \frac{4}{5}\]
\[\text{When, }\frac{\pi}{2} < A < \pi\text{ and }0 < B < \frac{\pi}{2}, \]
\[\cos A = - \sqrt{1 - \sin^2 A}\text{ and }\cos B = \sqrt{1 - \sin^2 B}\]
( As cosine function is negative in second qudrant and positive in first quadrant )
\[\Rightarrow \cos A = - \sqrt{1 - \left( \frac{12}{13} \right)^2}\text{ and }\cos B = \sqrt{1 - \left( \frac{4}{5} \right)^2}\]
\[ \Rightarrow \cos A = - \sqrt{1 - \frac{144}{169}}\text{ and }\cos B = \sqrt{1 - \frac{16}{25}}\]
\[ \Rightarrow \cos A = - \sqrt{\frac{25}{169}}\text{ and }\cos B = \sqrt{\frac{9}{25}}\]
\[ \Rightarrow \cos A = \frac{- 5}{13}\text{ and }\cos B = \frac{3}{5}\]
Now,
\[\sin\left( A + B \right) = \sin A \cos B + \cos A \sin B\]
\[ = \frac{12}{13} \times \frac{3}{5} + \frac{- 5}{13} \times \frac{4}{5}\]
\[ = \frac{36}{65} + \frac{- 20}{65}\]
\[ = \frac{16}{65}\]
APPEARS IN
संबंधित प्रश्न
Find the value of: sin 75°
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
Prove the following:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
Prove that
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.