हिंदी

Find the Maximum and Minimum Values of Each of the Following Trigonometrical Expression: Sin X − Cos X + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the maximum and minimum values of each of the following trigonometrical expression:

sin x − cos x + 1

टिप्पणी लिखिए

उत्तर

\[\text{ Let } f\left( x \right) = \sin x - \cos x + 1\]
\[\text{ We know that }\]
\[ - \sqrt{1^2 + ( - 1 )^2} \leq \sin x - \cos x \leq \sqrt{1^2 + ( - 1 )^2} for all x\]
\[ \Rightarrow - \sqrt{2} \leq \sin x - \cos x \leq \sqrt{2}\]
\[ \Rightarrow - \sqrt{2} + 1 \leq \sin x - \cos x + 1 \leq \sqrt{2} + 1\]
\[\text{ Hence maximum and minimum values of f(x) are } 1 + \sqrt{2} \text{ and } 1 - \sqrt{2} , \text{ respectively } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.2 | Q 1.4 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Find the value of: sin 75°


Prove the following:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`


Prove the following:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


Prove that: `(cos x  + cos y)^2 + (sin x - sin y )^2 =  4 cos^2  (x + y)/2`


If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that

\[\frac{\cos 9^\circ + \sin 9^\circ}{\cos 9^\circ - \sin 9^\circ} = \tan 54^\circ\]

Prove that:

\[\sin\left( \frac{\pi}{3} - x \right)\cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} - x \right)\sin\left( \frac{\pi}{6} + x \right) = 1\]

 


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.

 

If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].


If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


Prove that:

\[\frac{1}{\cos \left( x - a \right) \cos \left( a - b \right)} = \frac{\tan \left( x - b \right) - \tan \left( x - a \right)}{\sin \left( a - b \right)}\]

 


If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].


Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ. 


If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\]  then write the value of tan x tan y


If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is

 

If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


The value of sin(45° + θ) - cos(45° - θ) is ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.


If sinx + cosx = a, then |sinx – cosx| = ______.


State whether the statement is True or False? Also give justification.

If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×