Advertisements
Advertisements
प्रश्न
Reduce each of the following expressions to the sine and cosine of a single expression:
\[\sqrt{3} \sin x - \cos x\]
उत्तर
\[ \text{ Let } f\left( x \right) = \sqrt{3} \sin x - \cos x\]
\[\text{ Dividing and multiplying by }\sqrt{3 + 1}, i . e . \text{ by 2, we get }: \]
\[ f\left( x \right) = 2\left( \frac{\sqrt{3}}{2} \sin x - \frac{1}{2} \cos x \right)\]
\[ \Rightarrow f(x) = 2\left( \cos\frac{\pi}{6}\sin x - \sin\frac{\pi}{6}\cos x \right)\]
\[ \Rightarrow f(x) = 2\sin\left( x - \frac{\pi}{6} \right)\]
\[\text{ Again }, \]
\[ f\left( x \right) = 2\left( \frac{\sqrt{3}}{2} \sin x - \frac{1}{2} \cos x \right)\]
\[ \Rightarrow f\left( x \right) = 2\left( \sin\frac{\pi}{3} \sin x - \cos\frac{\pi}{3} \cos x \right)\]
\[ \Rightarrow f\left( x \right) = - 2\cos\left( \frac{\pi}{3} + x \right)\]
APPEARS IN
संबंधित प्रश्न
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that
Prove that:
Prove that:
Prove that:
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]
Prove that:
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
The value of tan3A - tan2A - tanA is equal to ______.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.