हिंदी

If f(x) = cos2x + sec2x, then ______. [Hint: A.M ≥ G.M.] - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]

विकल्प

  • f(x) < 1

  • f(x) = 1

  • 2 < f(x) < 1

  • f(x) ≥ 2

MCQ
रिक्त स्थान भरें

उत्तर

If f(x) = cos2x + sec2x, then f(x) ≥ 2.

Explanation:

Given that: f(x) = cos2x + sec2x

We know that AM ≥ GM

⇒ `(cos^2 x + sec^2x)/2 ≥ sqrt(cos^2x . sec^2x)`

⇒ `(cos^2x + sec^2)/2 ≥ 1`

⇒ cos2x + sec2x ≥ 2

⇒ f(x) ≥ 2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 31 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)


Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°


Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x


If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\] 


If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is 

 

 


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.


If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].


Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.


The value of sin(45° + θ) - cos(45° - θ) is ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×