Advertisements
Advertisements
प्रश्न
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
उत्तर
\[\tan x + \tan\left( x + \frac{\pi}{3} \right) + \tan\left( x + \frac{2\pi}{3} \right) = 3\]
\[ \Rightarrow \tan x + \frac{\tan x + \tan\frac{\pi}{3}}{1 - \tan x \tan \frac{\pi}{3}} + \frac{\tan x + \tan\frac{2\pi}{3}}{1 - \tan x \tan\frac{2\pi}{3}} = 3\]
\[ \Rightarrow \tan x + \frac{\tan x + \sqrt{3}}{1 - \sqrt{3}\tan x} + \frac{\tan x - \sqrt{3}}{1 + \sqrt{3}\tan x} = 3 \left[ \tan120^\circ = - \sqrt{3} \right]\]
\[ \Rightarrow \frac{\tan x(1 - 3 \tan^2 x) + \tan x + \sqrt{3} + \sqrt{3} \tan^2 x + 3\tan x + \tan x - \sqrt{3} - \sqrt{3} \tan^2 x + 3\tan x}{1 - 3 \tan^2 x} = 3 \]
\[ \Rightarrow \frac{9\tan x - 3 \tan^3 x}{1 - 3 \tan^2 x} = 3\]
\[ \Rightarrow \frac{3\tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\]
Hence proved .
APPEARS IN
संबंधित प्रश्न
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
Prove the following:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)
Prove that
Prove that:
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:
If sin α + sin β = a and cos α + cos β = b, show that
Prove that:
If angle \[\theta\] is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
tan 3A − tan 2A − tan A =
If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.
If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`