Advertisements
Advertisements
प्रश्न
If sin α + sin β = a and cos α + cos β = b, show that
उत्तर
\[a^2 + b^2 = \left( \sin\alpha + \sin\beta \right)^2 + (\cos\alpha + \cos\beta)^2 \]
\[ = \sin^2 \alpha + \sin^2 \beta + \cos^2 \alpha + \cos^2 \beta + 2\sin\alpha\sin\beta + 2\cos\alpha\cos\beta\]
\[ = 2 + 2 \cos(\alpha - \beta)\] ........(1)
Now,
\[ \Rightarrow b^2 - a^2 = {(\cos\alpha + \cos\beta)}^2 - \left( \sin\alpha + \sin\beta \right)^2 \]
\[ \Rightarrow b^2 - a^2 = \cos^2 \alpha + \cos^2 \beta - \sin^2 \alpha - \sin^2 \beta + 2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta\]
\[ \Rightarrow b^2 - a^2 = ( \cos^2 \alpha - \sin^2 \beta) + ( \cos^2 \beta - \sin^2 \alpha) - 2\cos(\alpha + \beta)\]
\[ \Rightarrow b^2 - a^2 = 2\cos(\alpha + \beta)\cos(\alpha - \beta) + 2\cos(\alpha - \beta)\]
\[ \Rightarrow b^2 - a^2 = \cos(\alpha + \beta)(2 + 2 \cos(\alpha - \beta)) \] .........(2)
From (1) and (2), we have
\[ \Rightarrow b^2 - a^2 = \cos(\alpha + \beta)\left( a^2 + b^2 \right) \]
\[\frac{b^2 - a^2}{a^2 + b^2} = \cos(\alpha + \beta)\]
APPEARS IN
संबंधित प्रश्न
Find the value of: tan 15°
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that
Prove that:
Prove that:
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
Prove that:
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
If sinθ + cosθ = 1, then find the general value of θ.
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.