Advertisements
Advertisements
प्रश्न
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
उत्तर
Given:
\[ \sin A = \frac{4}{5}\text{ and }\cos B = \frac{5}{13}\]
We know that
\[ \cos A = \sqrt{1 - \sin^2 A}\text{ and }\sin B = \sqrt{1 - \cos^2 B} ,\text{ where }0 < A , B < \frac{\pi}{2}\]
\[ \Rightarrow \cos A = \sqrt{1 - \left( \frac{4}{5} \right)^2} \text{ and }\sin B = \sqrt{1 - \left( \frac{5}{13} \right)^2}\]
\[ \Rightarrow \cos A = \sqrt{1 - \frac{16}{25}}\text{ and }\sin B = \sqrt{1 - \frac{25}{169}}\]
\[ \Rightarrow \cos A = \sqrt{\frac{9}{25}}\text{ and }\sin B = \sqrt{\frac{144}{169}}\]
\[ \Rightarrow \cos A = \frac{3}{5}\text{ and }\sin B = \frac{12}{13}\]
Now,
\[ \cos\left( A + B \right) = \cos A \cos B - \sin A \sin B\]
\[ = \frac{3}{5} \times \frac{5}{13} - \frac{4}{5} \times \frac{12}{13}\]
\[ = \frac{15}{65} - \frac{48}{55}\]
\[ = \frac{- 33}{65}\]
APPEARS IN
संबंधित प्रश्न
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)
Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°
Prove that
Prove that:
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]
Prove that:
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
If cot (α + β) = 0, sin (α + 2β) is equal to
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
If sinθ + cosθ = 1, then find the general value of θ.
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
The value of sin(45° + θ) - cos(45° - θ) is ______.
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |