Advertisements
Advertisements
प्रश्न
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
उत्तर
\[\text{ Given }:\]
\[\gamma = - \left[ \pi - (\alpha + \beta) \right]\]
\[\text{ Also }, \]
\[\lambda = \frac{\sin^2 \alpha + \sin^2 \beta - \sin^2 \left[ - (\pi - (\alpha + \beta) \right]}{\sin\alpha \sin\beta \cos( - (\pi - (\alpha + \beta))} \]
\[ = \frac{\sin^2 \alpha + \sin^2 \beta - (\sin(\alpha + \beta) )^2}{- (\sin\alpha \sin\beta\cos(\alpha + \beta))} \left[ \sin \left( \pi - \theta \right) = \sin \theta and \cos\left( \pi - \theta \right) = - \cos \theta \right]\]
\[ = \frac{\sin^2 \alpha + \sin^2 \beta - \sin^2 \alpha \cos^2 \beta - \cos^2 \alpha \sin^2 \beta - 2\sin\alpha \sin\beta \cos\alpha \cos\beta}{- (\sin\alpha \sin\beta \cos\alpha \cos\beta - \sin^2 \alpha \sin^2 \beta)}\]
\[ = \frac{\sin^2 \alpha(1 - \cos^2 \beta) + \sin^2 \beta(1 - \cos^2 \alpha) - 2\sin\alpha \sin\beta \cos\alpha \cos\beta}{\sin^2 \alpha \sin^2 \beta - \sin\alpha \sin\beta \cos\alpha \cos\beta}\]
\[ = \frac{2 \sin^2 \alpha \sin^2 \beta - 2\sin\alpha \sin\beta \cos\alpha \cos\beta}{\sin^2 \alpha \sin^2 \beta - \sin\alpha \sin\beta \cos\alpha \cos\beta}\]
\[ = 2\]
APPEARS IN
संबंधित प्रश्न
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)
Prove that
Prove that:
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Prove that:
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
Write the maximum value of 12 sin x − 9 sin2 x.
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If A + B = C, then write the value of tan A tan B tan C.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
The value of tan 75° - cot 75° is equal to ______.
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`