हिंदी

If α + β − γ = π and Sin2 α +Sin2 β − Sin2 γ = λ Sin α Sin β Cos γ, Then Write the Value of λ. - Mathematics

Advertisements
Advertisements

प्रश्न

If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ. 

टिप्पणी लिखिए

उत्तर

\[\text{ Given }:\]

\[\gamma = - \left[ \pi - (\alpha + \beta) \right]\]

\[\text{ Also }, \]

\[\lambda = \frac{\sin^2 \alpha + \sin^2 \beta - \sin^2 \left[ - (\pi - (\alpha + \beta) \right]}{\sin\alpha \sin\beta \cos( - (\pi - (\alpha + \beta))} \]

\[ = \frac{\sin^2 \alpha + \sin^2 \beta - (\sin(\alpha + \beta) )^2}{- (\sin\alpha \sin\beta\cos(\alpha + \beta))} \left[ \sin \left( \pi - \theta \right) = \sin \theta and \cos\left( \pi - \theta \right) = - \cos \theta \right]\]

\[ = \frac{\sin^2 \alpha + \sin^2 \beta - \sin^2 \alpha \cos^2 \beta - \cos^2 \alpha \sin^2 \beta - 2\sin\alpha \sin\beta \cos\alpha \cos\beta}{- (\sin\alpha \sin\beta \cos\alpha \cos\beta - \sin^2 \alpha \sin^2 \beta)}\]

\[ = \frac{\sin^2 \alpha(1 - \cos^2 \beta) + \sin^2 \beta(1 - \cos^2 \alpha) - 2\sin\alpha \sin\beta \cos\alpha \cos\beta}{\sin^2 \alpha \sin^2 \beta - \sin\alpha \sin\beta \cos\alpha \cos\beta}\]

\[ = \frac{2 \sin^2 \alpha \sin^2 \beta - 2\sin\alpha \sin\beta \cos\alpha \cos\beta}{\sin^2 \alpha \sin^2 \beta - \sin\alpha \sin\beta \cos\alpha \cos\beta}\]

\[ = 2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.3 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.3 | Q 1 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


Prove that: sin 3x + sin 2x – sin x = 4sin x `cos  x/2 cos  (3x)/2`


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that

\[\frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ - \sin 11^\circ} = \tan 56^\circ\]

Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

Prove that:

\[\frac{1}{\sin \left( x - a \right) \cos \left( x - b \right)} = \frac{\cot \left( x - a \right) + \tan \left( x - b \right)}{\cos \left( a - b \right)}\]

 


Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


Find the maximum and minimum values of each of the following trigonometrical expression:

sin x − cos x + 1


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


Write the maximum value of 12 sin x − 9 sin2 x


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If A + B = C, then write the value of tan A tan B tan C.


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\] 


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


The value of tan 75° - cot 75° is equal to ______.


If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.


The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.


If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.


State whether the statement is True or False? Also give justification.

If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×