Advertisements
Advertisements
प्रश्न
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
उत्तर
Given:
\[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\]
\[\text{ and }\pi < A < \frac{3\pi}{2}\text{ and }\frac{3\pi}{2} < B < 2\pi . \]
That is, A is in third quadrant and B is in fourth qudrant.
We know that sine function is negative in third and fourth quadrants .
Therefore,
\[\sin A = - \sqrt{1 - \cos^2 A}\text{ and }\sin B = - \sqrt{1 - \cos^2 B}\]
\[ \Rightarrow \sin A = \sqrt{1 - \left( \frac{- 24}{25} \right)^2}\text{ and }\sin B = - \sqrt{1 - \left( \frac{3}{5} \right)^2}\]
\[ \Rightarrow \sin A = - \sqrt{1 - \frac{576}{625}}\text{ and }\sin B = - \sqrt{1 - \frac{9}{25}}\]
\[ \Rightarrow \sin A = - \sqrt{\frac{49}{625}}\text{ and }\sin B = - \sqrt{\frac{16}{25}}\]
\[ \Rightarrow \sin A = \frac{- 7}{25}\text{ and }\sin B = \frac{- 4}{5}\]
Now
\[ \cos\left( A + B \right) = \cos A \cos B - \sin A \sin B\]
\[ = \frac{- 24}{25} \times \frac{3}{5} - \frac{- 7}{25} \times \frac{- 4}{5}\]
\[ = \frac{- 72}{125} - \frac{28}{125}\]
\[ = \frac{- 100}{125}\]
\[ = \frac{- 4}{5}\]
APPEARS IN
संबंधित प्रश्न
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If sin α + sin β = a and cos α + cos β = b, show that
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
Show that sin 100° − sin 10° is positive.
If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\]
Write the maximum value of 12 sin x − 9 sin2 x.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
The value of tan 75° - cot 75° is equal to ______.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |