हिंदी

Prove the following: cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1

योग

उत्तर

L.H.S. = cos 6x

= cos 3(2x)

= 4 cos3 2x – 3 cos 2x [cos 3A = 4 cos3 A – 3 cos A]

= 4 [(2 cos2 x – 1)3 – 3 (2 cos2 x – 1) [cos 2x = 2 cos2 x – 1]

= 4 [(2 cos2 x)3 – (1)3 – 3 (2 cos2 x)2 + 3 (2 cos2 x)] – 6cos2 x + 3

= 4 [8cos6x – 1 – 12 cos4x + 6 cos2x] – 6 cos2x + 3

= 32 cos6x – 4 – 48 cos4x + 24 cos2 x – 6 cos2x + 3

= 32 cos6x – 48 cos4x + 18 cos2x – 1

= R.H.S.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise 3.3 [पृष्ठ ७४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise 3.3 | Q 25 | पृष्ठ ७४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Prove the following:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


Prove the following:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)


If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)


Prove that

\[\frac{\cos 8^\circ - \sin 8^\circ}{\cos 8^\circ + \sin 8^\circ} = \tan 37^\circ\]

Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].


Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies. 


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\]  then write the value of tan x tan y


If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


tan 3A − tan 2A − tan A =


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`

[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]


The value of tan 75° - cot 75° is equal to ______.


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×