Advertisements
Advertisements
प्रश्न
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
उत्तर
\[\text{ Let } f\left( x \right) = 5 \cos x + 3 \cos\left( x + \frac{\pi}{3} \right) + 3\]
\[ = 5 \cos x + 3(\cos x \cos60°- \sin x \sin60°) + 3\]
\[ = 5 \cos x + \frac{3}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 3\]
\[ = \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 3\]
\[\text{ We know that }\]
\[ - \sqrt{\left( \frac{13}{2} \right)^2 + \left( \frac{3\sqrt{3}}{2} \right)^2} \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x \leq \sqrt{\left( \frac{13}{2} \right)^2 + \left( \frac{3\sqrt{3}}{2} \right)^2}\]
\[ - \sqrt{\frac{169}{4} + \frac{27}{4}} \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x \leq \sqrt{\frac{169}{4} + \frac{27}{4}}\]
\[ \Rightarrow - \frac{14}{2} \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x \leq \frac{14}{2}\]
\[ \Rightarrow - 7 + 3 \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 3 \leq 7 + 3\]
\[\text{ Hence, f(x) lies in the interval } \left[ - 4, 10 \right] .\]
APPEARS IN
संबंधित प्रश्न
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that:
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
If angle \[\theta\] is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
Reduce each of the following expressions to the sine and cosine of a single expression:
\[\sqrt{3} \sin x - \cos x\]
Show that sin 100° − sin 10° is positive.
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ
If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.