मराठी

Write the Interval in Which the Value of 5 Cos X + 3 Cos ( X + π 3 ) + 3 Lies. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies. 

रिकाम्या जागा भरा
टीपा लिहा

उत्तर

\[\text{ Let } f\left( x \right) = 5 \cos x + 3 \cos\left( x + \frac{\pi}{3} \right) + 3\]
\[ = 5 \cos x + 3(\cos x \cos60°- \sin x \sin60°) + 3\]
\[ = 5 \cos x + \frac{3}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 3\] 
\[ = \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 3\]
\[\text{ We know that }\]
\[ - \sqrt{\left( \frac{13}{2} \right)^2 + \left( \frac{3\sqrt{3}}{2} \right)^2} \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x \leq \sqrt{\left( \frac{13}{2} \right)^2 + \left( \frac{3\sqrt{3}}{2} \right)^2}\]
\[ - \sqrt{\frac{169}{4} + \frac{27}{4}} \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x \leq \sqrt{\frac{169}{4} + \frac{27}{4}}\]
\[ \Rightarrow - \frac{14}{2} \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x \leq \frac{14}{2}\]
\[ \Rightarrow - 7 + 3 \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 3 \leq 7 + 3\]
\[\text{ Hence, f(x) lies in the interval } \left[ - 4, 10 \right] .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.3 | Q 6 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that  `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


Prove the following:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


Prove the following:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]


Prove that:

\[\sin\left( \frac{\pi}{3} - x \right)\cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} - x \right)\sin\left( \frac{\pi}{6} + x \right) = 1\]

 


 If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


If angle \[\theta\]  is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]

 

Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ. 


tan 3A − tan 2A − tan A =


If cot (α + β) = 0, sin (α + 2β) is equal to


If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is 

 

 


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

If cotθ + tanθ = 2cosecθ, then find the general value of θ.


If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`

[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


The value of tan3A - tan2A - tanA is equal to ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×