Advertisements
Advertisements
प्रश्न
Prove the following:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
उत्तर
We have, L.H.S. = `(sin x + sin 3x)/(cos x + cos 3x)`
= `(2sin ((x + 3x)/2) cos ((x - 3x)/2))/(2cos ((x + 3x)/2) cos ((x - 3x)/2)`
= `(2sin2xcos(-x))/(2cos2xcos(-x)`
= `(sin2x)/(cos2x)`
= tan2x = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove the following:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Prove that
Prove that
Prove that:
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
If sin α + sin β = a and cos α + cos β = b, show that
If angle \[\theta\] is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
tan 3A − tan 2A − tan A =
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
The value of tan3A - tan2A - tanA is equal to ______.
The value of sin(45° + θ) - cos(45° - θ) is ______.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |