Advertisements
Advertisements
प्रश्न
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
पर्याय
-1
0
1
Not defined
उत्तर
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is 1.
Explanation:
`cot(pi/4 + theta)cot(pi/4 - theta) = (cot pi/4 cot theta - 1)/(cot theta + cot pi/4) xx (cot pi/4 cot theta + 1)/(cot theta - cot pi/4)`
= `(1cot theta - 1)/(cot theta + 1) xx (1cottheta + 1)/(cot theta - 1)`
= `(cot theta - 1)/(cot theta + 1) xx (cot theta + 1)/(cot theta - 1)`
= 1
APPEARS IN
संबंधित प्रश्न
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove the following:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)
Prove that
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If sin α + sin β = a and cos α + cos β = b, show that
Prove that:
If angle \[\theta\] is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
Write the maximum value of 12 sin x − 9 sin2 x.
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.