Advertisements
Advertisements
प्रश्न
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
विकल्प
-1
0
1
Not defined
उत्तर
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is 1.
Explanation:
`cot(pi/4 + theta)cot(pi/4 - theta) = (cot pi/4 cot theta - 1)/(cot theta + cot pi/4) xx (cot pi/4 cot theta + 1)/(cot theta - cot pi/4)`
= `(1cot theta - 1)/(cot theta + 1) xx (1cottheta + 1)/(cot theta - 1)`
= `(cot theta - 1)/(cot theta + 1) xx (cot theta + 1)/(cot theta - 1)`
= 1
APPEARS IN
संबंधित प्रश्न
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Prove that
Prove that:
Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
If sinθ + cosθ = 1, then find the general value of θ.
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.