हिंदी

If X Lies in the First Quadrant and Cos X = 8 17 , Then Prove That: Cos ( π 6 + X ) + Cos ( π 4 − X ) + Cos ( 2 π 3 − X ) = ( √ 3 − 1 2 + 1 √ 2 ) 23 17 - Mathematics

Advertisements
Advertisements

प्रश्न

If x lies in the first quadrant and cosx=817, then prove that:

cos(π6+x)+cos(π4x)+cos(2π3x)=(312+12)2317

 

टिप्पणी लिखिए

उत्तर

 Given: 0<x<π2
 Now, sinx=1cos2x=164289=1517
 LHS =cos(π6+x)+cos(π4x)+cos(2π3x)
=cos(30+x)+cos(45x)+cos(120x)
=cos30cosxsin30sinx+cos45cosx+sin45sinx+cos120cosx+sin120sinx{ Using formulas of cos(A+B) and cos(AB})
=cosx(cos30+cos45+cos120)+sinx(sin30+sin45+sin120)
=817(32+1212)+1517(12+12+32)
=817(312+12)+1517(312+12)
=2317(312+12)
 = RHS
Hence proved .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 24 | पृष्ठ २०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that  cot2 π6+cosec 5π6+3tan2 π6=6


Prove that: sin 3x + sin 2x – sin x = 4sin x cos x2cos 3x2


If sinA=35,cosB=1213, where A and B both lie in second quadrant, find the value of sin (A + B).


If cosA=2425 and cosB=35, where π < A < 3π2 and 3π2< B < 2π, find the following:
cos (A + B)


Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


If cosA=1213 and cotB=247, where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


Prove that

cos9+sin9cos9sin9=tan54

Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

If angle θ  is divided into two parts such that the tangents of one part is λ times the tangent of other, and ϕ is their difference, then show thatsinθ=λ+1λ1sinϕ

 

Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


Find the maximum and minimum values of each of the following trigonometrical expression: 

5cosx+3sin(π6x)+4


Reduce each of the following expressions to the sine and cosine of a single expression: 

3sinxcosx 


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


Show that sin 100° − sin 10° is positive. 


The value of sin25π12sin2π12 


If tanA=aa+1 and tanB=12a+1 


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


cos10+sin10cos10sin10=

 


If tan (A − B) = 1 and sec (A + B) = 23, the smallest positive value of B is

 

If tanα=xx+1 and tanα=xx+1, then α+β is equal to


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = 2aca2-c2.


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) 1-cosxsinx (i) cot2 x2
(b) 1+cosx1-cosx (ii) cot x2
(c) 1+cosxsinx (iii) |cosx+sinx|
(d) 1+sin2x (iv) tan x2

The value of tan3A - tan2A - tanA is equal to ______.


If tanA = 12, tanB = 13, then tan(2A + B) is equal to ______.


If α + β = π4, then the value of (1 + tan α)(1 + tan β) is ______.


If tanθ = ab, then bcos2θ + asin2θ is equal to ______.


State whether the statement is True or False? Also give justification.

If tanA = 1-cosBsinB, then tan2A = tanB


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.