Advertisements
Advertisements
प्रश्न
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
उत्तर
Given:
6 cosx + 8 sinx = 9
⇒ 6 cosx = 9 - 8 sinx
⇒ 36 cos2x = (9 - 8 sinx)2
⇒ 36(1 - sin2x) = 81 + 64 sin2x - 144 sinx
⇒100 sin2x - 144 sinx + 45 = 0
Now, α and β are the roots of the given equation; therefore, cos α and cos β are the roots of the above equation.
`=> sinalpha sinbeta = 45/100` `("Product of roots of a quadratic equation" ax^2+bx+c=0 "is" c/a.)`
Again, 6 cosx + 8 sinx = 9
⇒ 8 sinx = 9 - 6 cosx
⇒ 64 sin2x = (9 - 6 cosx)2
⇒ 64(1 - cos2x) = 81 + 36cos2x - 108 cosx
⇒ 100 cos2x - 108 cosx + 17 = 0
Now, α and β are the roots of the given equation; therefore, sin α and sin β are the roots of the above equation.
Therefore, cos α cos β = `17/100`
Hence, cos(α + β) = cos α cos β - sin α sin β
`=17/100-45/100`
`=-28/100`
`=-7/25`
\[\sin \left( \alpha + \beta \right) = \sqrt{1 - \cos^2 \left( \alpha + \beta \right)}\]
\[ = \sqrt{1 - \left( \frac{- 7}{25} \right)^2}\]
\[ = \sqrt{\frac{576}{625}}\]
\[ = \frac{24}{25}\]
APPEARS IN
संबंधित प्रश्न
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Find the value of: tan 15°
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)
Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]
Prove that
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
Reduce each of the following expressions to the sine and cosine of a single expression:
\[\sqrt{3} \sin x - \cos x\]
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
Write the maximum value of 12 sin x − 9 sin2 x.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
If cot (α + β) = 0, sin (α + 2β) is equal to
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
If sinθ + cosθ = 1, then find the general value of θ.
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
State whether the statement is True or False? Also give justification.
If tanA = `(1 - cos B)/sinB`, then tan2A = tanB
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |