हिंदी

Express the Following as the Sum Or Difference of Sines and Cosines: 2 Cos 7x Cos 3x - Mathematics

Advertisements
Advertisements

प्रश्न

Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x

योग

उत्तर

\[2\left( \cos 7x \right) \left( \cos 3x \right)\]
\[ = \cos \left( 7x + 3x \right) + \cos \left( 7x - 3x \right) \left[ \because 2 \cos A \cos B = \cos(A + B) + \cos(A - B) \right]\]
\[ = \cos 10x + \cos 4x\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.1 | Q 1.4 | पृष्ठ ६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the value of: sin 75°


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:

sin (A + B)

 


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)


If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].


Prove that:

\[\frac{1}{\sin \left( x - a \right) \cos \left( x - b \right)} = \frac{\cot \left( x - a \right) + \tan \left( x - b \right)}{\cos \left( a - b \right)}\]

 


Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


Write the maximum value of 12 sin x − 9 sin2 x


Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies. 


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\] 


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\] 


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


tan 3A − tan 2A − tan A =


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].


If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


If sinθ + cosθ = 1, then find the general value of θ.


Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


The value of tan3A - tan2A - tanA is equal to ______.


If sinx + cosx = a, then sin6x + cos6x = ______.


If sinx + cosx = a, then |sinx – cosx| = ______.


State whether the statement is True or False? Also give justification.

If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×