Advertisements
Advertisements
प्रश्न
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
विकल्प
(a) \[\frac{1}{2}\]
(b) \[\frac{\sqrt{3}}{2}\]
(c) 1
(d) 0
उत्तर
(b) \[\frac{\sqrt{3}}{2}\] \[\frac{5\pi}{12} = 75°, \frac{\pi}{12} = 15°\]
\[\sin^2 75° - \sin^2 15° \]
\[ = \sin^2 75 ° - \cos^2 75° \left[ \sin\left( 90° - \theta \right) = \cos\theta \right]\]
\[\text{ Now }, \sin75° = \sin(45° + 30°)\]
\[ = \sin45°\cos30°+ \cos45°\sin30°\]
\[ = \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2}\]
\[ = \frac{\sqrt{3} + 1}{2\sqrt{2}}\]
\[\cos75°= \cos(45° + 30°)\]
\[ = \cos45° \cos30°- \sin45°\sin30°\]
\[ = \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2}\]
\[ = \frac{\sqrt{3} - 1}{2\sqrt{2}}\]
\[\text{ Hence } , \]
\[ \sin^2 75° - \cos^2 75° = \left( \frac{\sqrt{3} + 1}{2\sqrt{2}} \right)^2 - \left( \frac{\sqrt{3} - 1}{2\sqrt{2}} \right)^2 \]
\[ = \frac{3 + 1 + 2\sqrt{3} - 3 - 1 + 2\sqrt{3}}{8}\]
\[ = \frac{4\sqrt{3}}{8}\]
\[ = \frac{\sqrt{3}}{2}\]
APPEARS IN
संबंधित प्रश्न
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that
Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
If sin α + sin β = a and cos α + cos β = b, show that
Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Show that sin 100° − sin 10° is positive.
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
The value of sin(45° + θ) - cos(45° - θ) is ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.