Advertisements
Advertisements
प्रश्न
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
पर्याय
(a) \[\frac{1}{2}\]
(b) \[\frac{\sqrt{3}}{2}\]
(c) 1
(d) 0
उत्तर
(b) \[\frac{\sqrt{3}}{2}\] \[\frac{5\pi}{12} = 75°, \frac{\pi}{12} = 15°\]
\[\sin^2 75° - \sin^2 15° \]
\[ = \sin^2 75 ° - \cos^2 75° \left[ \sin\left( 90° - \theta \right) = \cos\theta \right]\]
\[\text{ Now }, \sin75° = \sin(45° + 30°)\]
\[ = \sin45°\cos30°+ \cos45°\sin30°\]
\[ = \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2}\]
\[ = \frac{\sqrt{3} + 1}{2\sqrt{2}}\]
\[\cos75°= \cos(45° + 30°)\]
\[ = \cos45° \cos30°- \sin45°\sin30°\]
\[ = \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2}\]
\[ = \frac{\sqrt{3} - 1}{2\sqrt{2}}\]
\[\text{ Hence } , \]
\[ \sin^2 75° - \cos^2 75° = \left( \frac{\sqrt{3} + 1}{2\sqrt{2}} \right)^2 - \left( \frac{\sqrt{3} - 1}{2\sqrt{2}} \right)^2 \]
\[ = \frac{3 + 1 + 2\sqrt{3} - 3 - 1 + 2\sqrt{3}}{8}\]
\[ = \frac{4\sqrt{3}}{8}\]
\[ = \frac{\sqrt{3}}{2}\]
APPEARS IN
संबंधित प्रश्न
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].
Prove that:
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If sin α + sin β = a and cos α + cos β = b, show that
Prove that:
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\]
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.