Advertisements
Advertisements
प्रश्न
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
उत्तर
Given:
\[\sin\alpha \sin\beta - \cos \alpha \cos \beta + 1 = 0 \]
\[ \Rightarrow - (\cos\alpha \cos\beta - \sin\alpha \sin\beta) + 1 = 0\]
\[ \Rightarrow - \cos(\alpha + \beta) + 1 = 0\]
\[ \Rightarrow \cos(\alpha + \beta) = 1\]
\[\text{ Therefore, }\sin(\alpha + \beta) = 0 . . . . (1) (\text{ Since }\sin\theta = \sqrt{1 - \cos^2 \theta} ) \]
Hence ,
\[1 + \cot\alpha \tan\beta = 1 + \frac{\cos\alpha \sin\beta}{\sin\alpha \cos\beta} \]
\[ = \frac{\sin\alpha\cos\beta + \cos\alpha\sin\beta}{\sin\alpha \cos\beta}\]
\[ = \frac{\sin(\alpha + \beta)}{\sin\alpha\cos\beta}\]
\[ = 0 . . . \left\{\text{ From eq }(1) \right\}\]
Hence proved .
APPEARS IN
संबंधित प्रश्न
Find the value of: tan 15°
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)
Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]
Prove that
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\]
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If A + B = C, then write the value of tan A tan B tan C.
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2
[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]
The value of tan3A - tan2A - tanA is equal to ______.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.