Advertisements
Advertisements
प्रश्न
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
उत्तर
\[\text{ RHS }= \sin^2 A + \sin^2 \left( A - B \right) - 2\sin A \cos B \sin\left( A - B \right)\]
\[ = \sin^2 A + \sin\left( A - B \right) \left\{ \sin\left( A - B \right) - 2\sin A \cos B \right\}\]
\[ = \sin^2 A + \sin\left( A - B \right) \left( \sin A \cos B - \cos A \sin B - 2\sin A \cos B \right)\]
\[ = \sin^2 A + \sin\left( A - B \right) \left( - \sin A \cos B - \cos A \sin B \right)\]
\[ = \sin^2 A - \sin\left( A - B \right) \left( \sin A \cos B + \cos A \sin B \right)\]
\[ = \sin^2 A - \sin\left( A - B \right) \sin\left( A + B \right)\]
\[ = \sin^2 A - \left( \sin^2 A - \sin^2 B \right)\]
\[ = \sin^2 A - \sin^2 A + \sin^2 B\]
\[ = \sin^2 B\]
= LHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
Prove the following:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
Prove that:
Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that:
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
Reduce each of the following expressions to the sine and cosine of a single expression:
\[\sqrt{3} \sin x - \cos x\]
If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\]
If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.
If A + B = C, then write the value of tan A tan B tan C.
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
If sinθ + cosθ = 1, then find the general value of θ.
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2
[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
The value of tan 75° - cot 75° is equal to ______.
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.