Advertisements
Advertisements
प्रश्न
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
पर्याय
a2 + 1
a2 + 2
a2 − 2
None of these
उत्तर
Given:
\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = a\]
\[ \Rightarrow \left[ \tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) \right]^2 = a^2 \]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) + 2 \tan\left( \frac{\pi}{4} - x \right) \tan\left( \frac{\pi}{4} + x \right) = a^2 \]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) = a^2 - 2 \tan\left( \frac{\pi}{4} - x \right) \tan\left( \frac{\pi}{4} + x \right)\]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) = a^2 - 2\left[ \frac{\tan45^\circ - \tan x}{1 + \tan45^\circ \tan x} \times \frac{\tan45^\circ + \tan x}{1 - \tan45^\circ \tan x} \right] \]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) = a^2 - 2\left[ \frac{1^\circ - \tan x}{1 + \tan x} \times \frac{1 + \tan x}{1 - \tan x} \right]\]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) = a^2 - 2\left( \frac{1 - \tan^2 x}{1 - \tan^2 x} \right)\]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) = a^2 - 2\]
APPEARS IN
संबंधित प्रश्न
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Find the value of: tan 15°
Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
Prove that
Prove that:
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.