मराठी

If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = 2aca2-c2. - Mathematics

Advertisements
Advertisements

प्रश्न

If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.

बेरीज

उत्तर

Given that atanθ + bsecθ = c or asinθ + b = c cos θ

Using the identities,

sin θ = `(2tan  theta/2)/(1 + tan^2  theta/2)` and cos θ = `(1 - tan^2  theta/2)/(1 + tan^2  theta/2)`

We have, `(a(2tan  theta/2))/(1 + tan^2  theta/2) + b = (c(1 - tan^2  theta/2))/(1 + tan^2  theta/2)`

or `(b + c) tan^2  theta/2 + 2a tan  theta/2 + b - c` = 0

The above equation is quadratic in `tan  theta/2` and hence `tan  alpha/2` and `tan  beta/2` are the roots of this equation.

Therefore, `tan  alpha/2 + tan  beta/2 = (-2a)/(b + c)` and `tan  alpha/2  tan  beta/2 - (b - c)/(b + c)` 

Using the identity `tan(alpha/2 + beta/2) = (tan  alpha/2 + tan  beta/2)/(1 - tan  alpha/2 tan   beta/2)`

We have, `tan(alpha/2 + beta/2) = ((-2a)/(b + c))/(1 - (b - c)/(b + c))`

= `(-2a)/(2c) = (-a)/c`  .....(1)

Again, using another identity

`tan 2 (alpha + beta)/2 = (2tan  (alpha + beta)/2)/(1 - tan^2  (alpha + beta)/2)`

We have tan (α + β) = `(2(- a/c))/(1 - a^2/c^2)`

= `(2ac)/(a^2 - c^2)`  ......[From (1)]

Alternatively, given that a tanθ + b secθ = c

⇒ (a tanθ – c)2 = b2 (1 + tan2θ) 

⇒ a2 tan2θ – 2ac tanθ + c2 = b2 + b2 tan2θ

⇒ (a2 – b2) tan2θ – 2ac tanθ + c2 – b2 = 0  ......(1)

Since α and β are the roots of the equation (1)

So tanα + tanβ = `(2ac)/(a^2 - b^2)`

And tanα tanβ = `(c^2 - b^2)/(a^2 - b^2)`

Therefore,  tan (α + β) = `(tan  alpha + tan beta)/(1 - tan alpha tan beta)`

= `((2ac)/(a^2 - b^2))/((c^2 - b^2)/(a^2 - b^2))`

= `(2ac)/(a^2 - c^2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Solved Examples [पृष्ठ ४४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Solved Examples | Q 11 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Prove the following:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


Prove the following:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


 If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]


If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]


Reduce each of the following expressions to the sine and cosine of a single expression: 

\[\sqrt{3} \sin x - \cos x\] 


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


If sin (π cos x) = cos (π sin x), then sin 2x = ______.


The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×