English

If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = 2aca2-c2. - Mathematics

Advertisements
Advertisements

Question

If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.

Sum

Solution

Given that atanθ + bsecθ = c or asinθ + b = c cos θ

Using the identities,

sin θ = `(2tan  theta/2)/(1 + tan^2  theta/2)` and cos θ = `(1 - tan^2  theta/2)/(1 + tan^2  theta/2)`

We have, `(a(2tan  theta/2))/(1 + tan^2  theta/2) + b = (c(1 - tan^2  theta/2))/(1 + tan^2  theta/2)`

or `(b + c) tan^2  theta/2 + 2a tan  theta/2 + b - c` = 0

The above equation is quadratic in `tan  theta/2` and hence `tan  alpha/2` and `tan  beta/2` are the roots of this equation.

Therefore, `tan  alpha/2 + tan  beta/2 = (-2a)/(b + c)` and `tan  alpha/2  tan  beta/2 - (b - c)/(b + c)` 

Using the identity `tan(alpha/2 + beta/2) = (tan  alpha/2 + tan  beta/2)/(1 - tan  alpha/2 tan   beta/2)`

We have, `tan(alpha/2 + beta/2) = ((-2a)/(b + c))/(1 - (b - c)/(b + c))`

= `(-2a)/(2c) = (-a)/c`  .....(1)

Again, using another identity

`tan 2 (alpha + beta)/2 = (2tan  (alpha + beta)/2)/(1 - tan^2  (alpha + beta)/2)`

We have tan (α + β) = `(2(- a/c))/(1 - a^2/c^2)`

= `(2ac)/(a^2 - c^2)`  ......[From (1)]

Alternatively, given that a tanθ + b secθ = c

⇒ (a tanθ – c)2 = b2 (1 + tan2θ) 

⇒ a2 tan2θ – 2ac tanθ + c2 = b2 + b2 tan2θ

⇒ (a2 – b2) tan2θ – 2ac tanθ + c2 – b2 = 0  ......(1)

Since α and β are the roots of the equation (1)

So tanα + tanβ = `(2ac)/(a^2 - b^2)`

And tanα tanβ = `(c^2 - b^2)/(a^2 - b^2)`

Therefore,  tan (α + β) = `(tan  alpha + tan beta)/(1 - tan alpha tan beta)`

= `((2ac)/(a^2 - b^2))/((c^2 - b^2)/(a^2 - b^2))`

= `(2ac)/(a^2 - c^2)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Solved Examples [Page 44]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Solved Examples | Q 11 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that  `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Prove the following:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


Prove that

\[\frac{\cos 9^\circ + \sin 9^\circ}{\cos 9^\circ - \sin 9^\circ} = \tan 54^\circ\]

Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].


Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.


Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


If sin α + sin β = a and cos α + cos β = b, show that

\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

 


Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies. 


If A + B = C, then write the value of tan A tan B tan C.


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


If cot (α + β) = 0, sin (α + 2β) is equal to


If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then


If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


If sinθ + cosθ = 1, then find the general value of θ.


The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.


If sinx + cosx = a, then |sinx – cosx| = ______.


The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.


State whether the statement is True or False? Also give justification.

If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×