Advertisements
Advertisements
Question
If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.
Solution
Given that atanθ + bsecθ = c or asinθ + b = c cos θ
Using the identities,
sin θ = `(2tan theta/2)/(1 + tan^2 theta/2)` and cos θ = `(1 - tan^2 theta/2)/(1 + tan^2 theta/2)`
We have, `(a(2tan theta/2))/(1 + tan^2 theta/2) + b = (c(1 - tan^2 theta/2))/(1 + tan^2 theta/2)`
or `(b + c) tan^2 theta/2 + 2a tan theta/2 + b - c` = 0
The above equation is quadratic in `tan theta/2` and hence `tan alpha/2` and `tan beta/2` are the roots of this equation.
Therefore, `tan alpha/2 + tan beta/2 = (-2a)/(b + c)` and `tan alpha/2 tan beta/2 - (b - c)/(b + c)`
Using the identity `tan(alpha/2 + beta/2) = (tan alpha/2 + tan beta/2)/(1 - tan alpha/2 tan beta/2)`
We have, `tan(alpha/2 + beta/2) = ((-2a)/(b + c))/(1 - (b - c)/(b + c))`
= `(-2a)/(2c) = (-a)/c` .....(1)
Again, using another identity
`tan 2 (alpha + beta)/2 = (2tan (alpha + beta)/2)/(1 - tan^2 (alpha + beta)/2)`
We have tan (α + β) = `(2(- a/c))/(1 - a^2/c^2)`
= `(2ac)/(a^2 - c^2)` ......[From (1)]
Alternatively, given that a tanθ + b secθ = c
⇒ (a tanθ – c)2 = b2 (1 + tan2θ)
⇒ a2 tan2θ – 2ac tanθ + c2 = b2 + b2 tan2θ
⇒ (a2 – b2) tan2θ – 2ac tanθ + c2 – b2 = 0 ......(1)
Since α and β are the roots of the equation (1)
So tanα + tanβ = `(2ac)/(a^2 - b^2)`
And tanα tanβ = `(c^2 - b^2)/(a^2 - b^2)`
Therefore, tan (α + β) = `(tan alpha + tan beta)/(1 - tan alpha tan beta)`
= `((2ac)/(a^2 - b^2))/((c^2 - b^2)/(a^2 - b^2))`
= `(2ac)/(a^2 - c^2)`
APPEARS IN
RELATED QUESTIONS
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Prove the following:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Prove that
Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
If sin α + sin β = a and cos α + cos β = b, show that
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If A + B = C, then write the value of tan A tan B tan C.
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If cot (α + β) = 0, sin (α + 2β) is equal to
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
If sinθ + cosθ = 1, then find the general value of θ.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`