Advertisements
Advertisements
Question
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
Solution
Given:
\[\sin A = \frac{1}{2}\text{ and }\cos B = \frac{12}{13}\]
\[\text{ Here, }\frac{\pi}{2} < A < \pi \text{ and }\frac{3\pi}{2} < B < 2\pi . \]
That is, A is in the second quadrant and B is in the fourth quadrant .
We know that in the second quadrant, sine function is positive and cosine and tan functions are negative .
In the fourth quadrant, sine and tan functions are negative and cosine function is positive .
Therefore,
\[\cos A = - \sqrt{1 - \sin^2 A} = - \sqrt{1 - \left( \frac{1}{2} \right)^2} = - \sqrt{1 - \frac{1}{4}} = - \sqrt{\frac{3}{4}} = \frac{- \sqrt{3}}{2}\]
\[\tan A = \frac{\sin A}{\cos A} = \frac{\frac{1}{2}}{\frac{- \sqrt{3}}{2}} = \frac{- 1}{\sqrt{3}}\]
\[\sin B = - \sqrt{1 - \cos^2 B} = - \sqrt{1 - \left( \frac{12}{13} \right)^2} = - \sqrt{1 - \frac{144}{169}} = - \sqrt{\frac{25}{169}} = \frac{- 5}{13}\]
\[\tan B = \frac{\sin B}{\cos B} = \frac{- \frac{5}{13}}{\frac{12}{13}} = \frac{- 5}{12}\]
\[\text{ Now, }\tan\left( A - B \right) = \frac{\tan A - \tan B}{1 + \tan A \tan B}\]
\[ = \frac{\frac{- 1}{\sqrt{3}} - \frac{- 5}{12}}{1 + \frac{- 1}{\sqrt{3}} \times \frac{- 5}{12}}\]
\[ = \frac{\frac{- 12 + 5\sqrt{3}}{12\sqrt{3}}}{\frac{12\sqrt{3} + 5}{12\sqrt{3}}} = \frac{5\sqrt{3} - 12}{5 + 12\sqrt{3}}\]
APPEARS IN
RELATED QUESTIONS
Find the value of: sin 75°
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)
If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Prove that:
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
The value of sin(45° + θ) - cos(45° - θ) is ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |