Advertisements
Advertisements
Question
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |
Solution
Column A | Answers |
(a) sin(x + y) sin(x – y) | (iv) sin2x – sin2y |
(b) cos (x + y) cos (x – y) | (i) cos2x – sin2y |
(c) `cot(pi/4 + theta)` | (ii) `(1 - tan theta)/(1 + tan theta)` |
(d) `tan(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
Explanation:
(a) sin(x + y) sin(x – y) = sin2x – sin2y
(b) cos(x + y) cos(x – y) = cos2x – cos2y
(c) `cot(pi/4 + theta) = (cot pi/4 cot theta - 1)/(cot theta + cot pi/4)`
= `(cot theta - 1)/(cot theta + 1)`
= `(1 - tan theta)/(1 + tan theta)`
(d) `tan(pi/4 + theta) = (tan pi/4 + tan theta)/(1 - tan pi/4 theta)`
= `(1 + tan theta)/(1 - tan theta)`
APPEARS IN
RELATED QUESTIONS
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove the following:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]
Prove that
Prove that:
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If sin α + sin β = a and cos α + cos β = b, show that
Write the maximum value of 12 sin x − 9 sin2 x.
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
The value of sin(45° + θ) - cos(45° - θ) is ______.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.