English

Prove That:Tan 8x − Tan 6x − Tan 2x = Tan 8x Tan 6x Tan 2x - Mathematics

Advertisements
Advertisements

Question

Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x

Short Note

Solution

We know that 8x = 6x + 2x
Therefore, 
\[ \tan\left( 8x \right) = \tan\left( 6x + 2x \right)\]
\[ \Rightarrow \tan\left( 8x \right) = \frac{\tan6x + \tan2x}{1 - \tan6x \tan2x}\]
\[ \Rightarrow \tan8x - \tan8x \tan6x \tan2x = \tan6x + \tan2x\]
\[ \Rightarrow \tan8x - \tan6x - \tan2x = \tan8x \tan6x \tan2x\]
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [Page 20]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 17.1 | Page 20

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that: `sin^2  pi/6 + cos^2  pi/3 - tan^2  pi/4 = -1/2`


Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)


Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]


If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].


If sin α + sin β = a and cos α + cos β = b, show that

\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

 


If angle \[\theta\]  is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]

 

If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


tan 3A − tan 2A − tan A =


\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


If sinx + cosx = a, then sin6x + cos6x = ______.


If sinx + cosx = a, then |sinx – cosx| = ______.


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×