Advertisements
Advertisements
Question
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
Options
(a) \[\frac{1}{2}\]
(b) \[\frac{\sqrt{3}}{2}\]
(c) 1
(d) 0
Solution
(b) \[\frac{\sqrt{3}}{2}\] \[\frac{5\pi}{12} = 75°, \frac{\pi}{12} = 15°\]
\[\sin^2 75° - \sin^2 15° \]
\[ = \sin^2 75 ° - \cos^2 75° \left[ \sin\left( 90° - \theta \right) = \cos\theta \right]\]
\[\text{ Now }, \sin75° = \sin(45° + 30°)\]
\[ = \sin45°\cos30°+ \cos45°\sin30°\]
\[ = \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2}\]
\[ = \frac{\sqrt{3} + 1}{2\sqrt{2}}\]
\[\cos75°= \cos(45° + 30°)\]
\[ = \cos45° \cos30°- \sin45°\sin30°\]
\[ = \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2}\]
\[ = \frac{\sqrt{3} - 1}{2\sqrt{2}}\]
\[\text{ Hence } , \]
\[ \sin^2 75° - \cos^2 75° = \left( \frac{\sqrt{3} + 1}{2\sqrt{2}} \right)^2 - \left( \frac{\sqrt{3} - 1}{2\sqrt{2}} \right)^2 \]
\[ = \frac{3 + 1 + 2\sqrt{3} - 3 - 1 + 2\sqrt{3}}{8}\]
\[ = \frac{4\sqrt{3}}{8}\]
\[ = \frac{\sqrt{3}}{2}\]
APPEARS IN
RELATED QUESTIONS
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Find the value of: sin 75°
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)
Prove that
Prove that:
Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
Prove that:
Prove that:
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.