Advertisements
Advertisements
Question
Prove that
Solution
\[\text{ LHS }= \frac{\cos9^\circ + \sin9^\circ}{\cos9^\circ - \sin9^\circ}\]
\[ = \frac{\frac{\cos9^\circ}{\cos9^\circ} + \frac{\sin9^\circ}{\cos9^\circ}}{\frac{\cos9^\circ}{\cos9^\circ} - \frac{\sin9^\circ}{\cos9^\circ}} \left(\text{ Dividing the numerator and denominator by }\cos9 \right)\]
\[ = \frac{1 + \tan9^\circ}{1 - \tan9^\circ}\]
\[ = \frac{1 + \tan9^\circ}{1 + 1 \times \tan9^\circ}\]
\[ = \frac{\tan45^\circ + \tan9^\circ}{1 - \tan45^\circ \times \tan9^\circ} \left(\text{ As }\tan45^\circ = 1 \right)\]
\[ = \tan\left( 45^\circ + 9^\circ \right) \left[\text{ As }\frac{\tan A + \tan B}{1 - \tan A \tan B} = \tan\left( A + B \right) \right]\]
\[ = \tan54^\circ\]
= RHS
Hence proved .
APPEARS IN
RELATED QUESTIONS
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Prove that:
Prove that:
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
If angle \[\theta\] is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
If A + B = C, then write the value of tan A tan B tan C.
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
If cot (α + β) = 0, sin (α + 2β) is equal to
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If sinθ + cosθ = 1, then find the general value of θ.
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.
State whether the statement is True or False? Also give justification.
If tanA = `(1 - cos B)/sinB`, then tan2A = tanB
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`