English

The Maximum Value of Sin 2 ( 2 π 3 + X ) + Sin 2 ( 2 π 3 − X ) is - Mathematics

Advertisements
Advertisements

Question

The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is

Options

  • 1/2

  • \[\frac{3}{2}\]

     

  • 1/4

  • 3/4

MCQ

Solution

\[\frac{3}{2}\]
\[\frac{2\pi}{3} = 120^\circ\]
\[\text{ Let }f(x) = \sin^2 (90 + 30 + x) + \sin^2 (90 + 30 - x)\]
\[ = \left[ \cos(30 + x) \right]^2 + \left[ \cos(30 - x) \right]^2 \left[\text{ Using }\sin(90 + A) = \cos A \right]\]
\[ = \left[ \frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x \right]^2 + \left[ \frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x \right]^2 \]
\[ = \frac{3}{4} \cos^2 x + \frac{1}{4} \sin^2 x - \frac{\sqrt{3}}{2}\cos x \sin x + \frac{3}{4} \cos^2 x + \frac{1}{4} \sin^2 x + \frac{\sqrt{3}}{2}\cos x \sin x\]
\[ = \frac{3}{2} \cos^2 x + \frac{1}{2} \sin^2 x\]
\[ = \frac{3}{2}\left( 1 - \sin^2 x \right) + \frac{1}{2} \sin^2 x\]
\[ = \frac{3}{2} - \frac{3}{2} \sin^2 x + \frac{1}{2} \sin^2 x\]
\[ = \frac{3}{2} - \sin^2 x\]
\[\text{ For }f(x)\text{ to be maximum, }\sin^2 x \text{ must have minimum value, which is 0. }\]
\[ \therefore \frac{3}{2}\text{ is the maximum value of }f\left( x \right) .\]
 
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.4 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.4 | Q 20 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove the following:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:

sin (A + B)

 


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)


Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]


Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If sin α + sin β = a and cos α + cos β = b, show that

\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

 


Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]


Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


Find the maximum and minimum values of each of the following trigonometrical expression:

sin x − cos x + 1


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


Write the maximum value of 12 sin x − 9 sin2 x


Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies. 


If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\]  then write the value of tan x tan y


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to


Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].


If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


If sinθ + cosθ = 1, then find the general value of θ.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


State whether the statement is True or False? Also give justification.

If tanA = `(1 - cos B)/sinB`, then tan2A = tanB


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×