Advertisements
Advertisements
Question
Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x
Solution
\[2\left( \sin 4x \right) \left( \sin 3x \right)\]
\[ = \cos \left( 4x - 3x \right) - \cos \left( 4x + 3x \right) \left[ \because 2 \sin A \sin B = \cos(A - B) - \cos(A + B) \right]\]
\[ = \cos x - \cos 7x\]
APPEARS IN
RELATED QUESTIONS
Prove the following:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]
Prove that
Prove that
Prove that:
Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]
Prove that:
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
Reduce each of the following expressions to the sine and cosine of a single expression:
\[\sqrt{3} \sin x - \cos x\]
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
Write the maximum value of 12 sin x − 9 sin2 x.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
If sinx + cosx = a, then sin6x + cos6x = ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.