English

Reduce Each of the Following Expressions to the Sine and Cosine of a Single Expression: √ 3 Sin X − Cos X - Mathematics

Advertisements
Advertisements

Question

Reduce each of the following expressions to the sine and cosine of a single expression: 

\[\sqrt{3} \sin x - \cos x\] 

Short Note

Solution

\[ \text{ Let } f\left( x \right) = \sqrt{3} \sin x - \cos x\]
\[\text{ Dividing and multiplying by }\sqrt{3 + 1}, i . e . \text{ by 2, we get }: \]
\[ f\left( x \right) = 2\left( \frac{\sqrt{3}}{2} \sin x - \frac{1}{2} \cos x \right)\]
\[ \Rightarrow f(x) = 2\left( \cos\frac{\pi}{6}\sin x - \sin\frac{\pi}{6}\cos x \right)\]
\[ \Rightarrow f(x) = 2\sin\left( x - \frac{\pi}{6} \right)\]
\[\text{ Again }, \]
\[ f\left( x \right) = 2\left( \frac{\sqrt{3}}{2} \sin x - \frac{1}{2} \cos x \right)\]
\[ \Rightarrow f\left( x \right) = 2\left( \sin\frac{\pi}{3} \sin x - \cos\frac{\pi}{3} \cos x \right)\]
\[ \Rightarrow f\left( x \right) = - 2\cos\left( \frac{\pi}{3} + x \right)\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.2 | Q 2.1 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the value of: sin 75°


Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`


Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)


If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).


Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]


Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


Show that sin 100° − sin 10° is positive. 


If A + B = C, then write the value of tan A tan B tan C.


If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\] 


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


If cot (α + β) = 0, sin (α + 2β) is equal to


\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


If sin (π cos x) = cos (π sin x), then sin 2x = ______.


If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is 

 

 


If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =


If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to


If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


State whether the statement is True or False? Also give justification.

If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×