Advertisements
Advertisements
Question
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Options
- \[\frac{\pi}{2}\]
- \[\frac{\pi}{3}\]
- \[\frac{\pi}{6}\]
- \[\frac{\pi}{4}\]
Solution
It is given that \[\tan\alpha = \frac{x}{x + 1}\] and
\[\tan\left( \alpha + \beta \right) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta}\]
\[ = \frac{\frac{x}{x + 1} + \frac{1}{2x + 1}}{1 - \frac{x}{x + 1} \times \frac{1}{2x + 1}}\]
\[ = \frac{\frac{x\left( 2x + 1 \right) + \left( x + 1 \right)}{\left( x + 1 \right)\left( 2x + 1 \right)}}{\frac{\left( x + 1 \right)\left( 2x + 1 \right) - x}{\left( x + 1 \right)\left( 2x + 1 \right)}}\]
\[ = \frac{2 x^2 + x + x + 1}{2 x^2 + 3x + 1 - x}\]
\[= \frac{2 x^2 + 2x + 1}{2 x^2 + 2x + 1}\]
\[ = 1\]
\[\therefore \alpha + \beta = \frac{\pi}{4} \left( \tan\frac{\pi}{4} = 1 \right)\]
Hence, the correct answer is option D.
APPEARS IN
RELATED QUESTIONS
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
Prove the following:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
Prove that
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If sin α + sin β = a and cos α + cos β = b, show that
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
Write the maximum value of 12 sin x − 9 sin2 x.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
tan 3A − tan 2A − tan A =
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
If sinx + cosx = a, then sin6x + cos6x = ______.
If sinx + cosx = a, then |sinx – cosx| = ______.