Advertisements
Advertisements
Question
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
Options
`pi/2`
`pi/3`
`pi/6`
`pi/4`
Solution
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to `bbunderline(pi/4)`.
Explanation:
Given that tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`
tan(α + β) = `(tanalpha + tanbeta)/(1 - tanalpha tanbeta)`
= `(m/(m + 1) + 1/(2m + 1))/(1 - m/(m + 1) xx 1/(2m + 1))`
= `((2m^2 + m + m + 1)/((m + 1)(2m + 1)))/(((m + 1)(2m + 1) - m)/((m + 1)(2m + 1))`
= `(2m^2 + 2m + 1)/(2m^2 + 2m + m + 1 - m)`
= `(2m^2 + 2m + 1)/(2m^2 + 2m + 1)`
= 1
⇒ tan(α + β) = `tan pi/4`
∴ α + β = `pi/4`
APPEARS IN
RELATED QUESTIONS
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]
Prove that
Prove that:
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If sin α + sin β = a and cos α + cos β = b, show that
If angle \[\theta\] is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
Reduce each of the following expressions to the sine and cosine of a single expression:
\[\sqrt{3} \sin x - \cos x\]
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
State whether the statement is True or False? Also give justification.
If tanA = `(1 - cos B)/sinB`, then tan2A = tanB