English

If tanα = mm+ 1, tanβ = 12m+1, then α + β is equal to ______. - Mathematics

Advertisements
Advertisements

Question

If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.

Options

  • `pi/2`

  • `pi/3`

  • `pi/6`

  • `pi/4`

MCQ
Fill in the Blanks

Solution

If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to `bbunderline(pi/4)`.

Explanation:

Given that tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`

tan(α + β) = `(tanalpha + tanbeta)/(1 - tanalpha tanbeta)`

= `(m/(m + 1) + 1/(2m + 1))/(1 - m/(m + 1) xx 1/(2m + 1))`

= `((2m^2 + m + m + 1)/((m + 1)(2m + 1)))/(((m + 1)(2m + 1) - m)/((m + 1)(2m + 1))`

= `(2m^2 + 2m + 1)/(2m^2 + 2m + m + 1 - m)`

= `(2m^2 + 2m + 1)/(2m^2 + 2m + 1)` 

= 1

⇒ tan(α + β) = `tan  pi/4`

∴ α + β = `pi/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 56]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 40 | Page 56

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]


Prove that

\[\frac{\cos 8^\circ - \sin 8^\circ}{\cos 8^\circ + \sin 8^\circ} = \tan 37^\circ\]

Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If sin α + sin β = a and cos α + cos β = b, show that

\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

 


If angle \[\theta\]  is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]

 

If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


Reduce each of the following expressions to the sine and cosine of a single expression: 

\[\sqrt{3} \sin x - \cos x\] 


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then


If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


State whether the statement is True or False? Also give justification.

If tanA = `(1 - cos B)/sinB`, then tan2A = tanB


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×